Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Flow Structure behind Spanwise Pin Array in Supersonic Flow

Philip A. Lax    
Skye Elliott    
Stanislav Gordeyev    
Matthew R. Kemnetz and Sergey B. Leonov    

Resumen

This work focused on the experimental characterization of a complex flow structure behind a cross-flow array of cylindrical pins installed on the wall of a supersonic duct. This geometry simulates several common gas dynamic configurations, such as a supersonic mixer, a turbulence-generating grid, or, to some extent, a grid fin. In this work, the instrumentation employed is essentially non-intrusive, including spanwise integrating techniques such as (1) fast schlieren visualization and (2) Shack?Hartmann wavefront sensors; and planar techniques, namely (3) acetone Mie scattering and (4) acetone planar laser-induced fluorescence. An analysis of the data acquired by these complementary methods allowed the reconstruction of a three-dimensional portrait of supersonic flow interactions with a discrete pin array, including the shock wave structure, forefront separation zone, shock-induced separation zone, shear layer, and the mixing zone behind the pins. The main objective of this activity was to use various visualization techniques to acquire essential details of a complex compressible flow in a wide range of temporal?spatial scales. Particularly, a fine structure in the supersonic shear layer generated by the pin tips was captured by a Mie scattering technique. Based on the available publications, such structures have not been previously identified or discussed. Another potential outcome of this work is that the details revealed could be utilized for adequate code validation in numerical simulations.

 Artículos similares

       
 
Qizong Sun, Ertian Hua, Liying Sun, Linfeng Qiu, Yabo Song and Mingwang Xiang    
The flapping hydrofoil bionic pump is an innovative hydrodynamic device that utilizes flapping hydrofoil technology. Flapping hydrofoil bionic pumps are crucial in addressing issues like inadequate river hydropower and limited water purification capabili... ver más
Revista: Water

 
Pawel Burandt, Miroslaw Grzybowski, Katarzyna Glinska-Lewczuk, Wojciech Gotkiewicz, Monika Szymanska-Walkiewicz and Krystian Obolewski    
The objective of the study was to determine the relationship between the structure of phytocenoses in riparian wetland ecosystems and the hydrologic regime in a lowland river floodplain. The hydrobotanical study was conducted over three years?2017, 2018,... ver más
Revista: Water

 
Manigandan Paneer, Josip Ba?ic, Damir Sedlar, ?eljan Lozina, Nastia Degiuli and Chong Peng    
This study investigates the impact of fluid loads on the elastic deformation and dynamic response of linear structures. A weakly coupled modal solver is presented, which involves the solution of a dynamic equation of motion with external loads. The mode ... ver más

 
Kaipeng Zhu, Kai Li, Yadong Ji, Xiaolong Li, Xuan Liu, Kaide Liu and Xuandong Chen    
The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, a... ver más
Revista: Water

 
Dilshan S. P. Amarasinghe Baragamage and Weiming Wu    
A three-dimensional (3D) fully-coupled fluid-structure model has been developed in this study to calculate the impact force of tsunamis on a flexible structure considering fluid-structure interactions. The propagation of a tsunami is simulated by solving... ver más
Revista: Water