Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Aerospace  /  Vol: 3 Par: 3 (2016)  /  Artículo
ARTÍCULO
TITULO

Aerodynamic Modeling of NREL 5-MW Wind Turbine for Nonlinear Control System Design: A Case Study Based on Real-Time Nonlinear Receding Horizon Control

Pedro A. Galvani    
Fei Sun and Kamran Turkoglu    

Resumen

The work presented in this paper has two major aspects: (i) investigation of a simple, yet efficient model of the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine; (ii) nonlinear control system development through a real-time nonlinear receding horizon control methodology with application to wind turbine control dynamics. In this paper, the results of our simple wind turbine model and a real-time nonlinear control system implementation are shown in comparison with conventional control methods. For this purpose, the wind turbine control problem is converted into an optimization problem and is directly solved by the nonlinear backwards sweep Riccati method to generate the control protocol, which results in a non-iterative algorithm. One main contribution of this paper is that we provide evidence through simulations, that such an advanced control strategy can be used for real-time control of wind turbine dynamics. Examples are provided to validate and demonstrate the effectiveness of the presented scheme.

 Artículos similares

       
 
Sunghun Jung    
Unmanned aerial vehicles (UAVs) are extensively employed in civilian and military applications because of their excellent maneuverability. Achieving fully autonomous quadrotor flight and precision landing on a wireless charging station in the presence of... ver más
Revista: Aerospace

 
Wenhao Li, Xianxia Zhang, Yueying Wang and Songbo Xie    
Model predictive control (MPC), an extensively developed rolling optimization control method, is widely utilized in the industrial field. While some researchers have incorporated predictive control into underactuated unmanned surface vehicles (USVs), mos... ver más

 
Bowen Sui, Jianqiang Zhang, Zhong Liu and Junbao Wei    
This paper proposes a fixed-time prescribed performance control technique to address the challenge of precise trajectory tracking control for unmanned surface vessels (USVs) in the presence of external time-varying disturbances and input saturation. To b... ver más

 
José Azinheira, Reginaldo Carvalho, Ely Paiva and Rafael Cordeiro    
This paper proposes a new kind of airship actuator configuration for surveillance and environmental monitoring missions. We present the design and application of a six-propeller electrical airship (Noamini) with independent tilting propellers, allowing i... ver más
Revista: Aerospace

 
Umberto Saetti, Jonathan Rogers, Mushfiqul Alam and Michael Jump    
A novel trajectory generation and control architecture for fully autonomous autorotative flare that combines rapid path generation with model-based control is proposed. The trajectory generation component uses optical Tau theory to compute flare trajecto... ver más
Revista: Aerospace