Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 2 (2023)  /  Artículo
ARTÍCULO
TITULO

Preliminary Design and Simulation of a Thermal Management System with Integrated Secondary Power Generation Capability for a Mach 8 Aircraft Concept Exploiting Liquid Hydrogen

Davide Ferretto and Nicole Viola    

Resumen

This paper introduces the concept of a thermal management system (TMS) with integrated on-board power generation capabilities for a Mach 8 hypersonic aircraft powered by liquid hydrogen (LH2). This work, developed within the EU-funded STRATOFLY Project, aims to demonstrate an opportunity for facing the challenges of hypersonic flight for civil applications, mainly dealing with thermal and environmental control, as well as propellant distribution and on-board power generation, adopting a highly integrated plant characterized by a multi-functional architecture. The TMS concept described in this paper makes benefit of the connection between the propellant storage and distribution subsystems of the aircraft to exploit hydrogen vapors and liquid flow as the means to drive a thermodynamic cycle able, on one hand, to ensure engine feed and thermal control of the cabin environment, while providing, on the other hand, the necessary power for other on-board systems and utilities, especially during the operation of high-speed propulsion plants, which cannot host traditional generators. The system layout, inspired by concepts studied within precursor EU-funded projects, is detailed and modified in order to suggest an operable solution that can be installed on-board the reference aircraft, with focus on those interfaces impacting its performance requirements and integration features as part of the overall systems architecture of the plane. Analysis and modeling of the system is performed, and the main results in terms of performance along the reference mission profile are discussed.

 Artículos similares

       
 
Jordi Renau Martínez, Víctor García Peñas, Manuel Ibáñez Arnal, Alberto Giménez Sancho, Eduardo López González, Adelaida García Magariño, Félix Terroba Ramírez, Francisco Javier Moreno Ayerbe and Fernando Sánchez López    
This article presents the design and manufacturing of a hydrogen-powered unmanned aquatic surface vehicle (USV) hull. The design process comprised three stages: (1) defining the requirements for a preliminary geometry, (2) verifying the hydrodynamic hull... ver más

 
Won-June Jeong, Seol Nam, Jong-Chun Park and Hyeon Kyu Yoon    
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations we... ver más

 
Zikang Jin, Zonghan Yu, Fanshuo Meng, Wei Zhang, Jingzhi Cui, Xiaolong He, Yuedi Lei and Omer Musa    
The parametric design method is widely utilized in the preliminary design stage for hypersonic vehicles; it ensures the fast iteration of configuration, generation, and optimization. This study proposes a novel parametric method for a wide-range, wing-mo... ver más
Revista: Aerospace

 
Luisa Boni, Marco Bassetto and Alessandro A. Quarta    
Photonic solar sails are a class of advanced propellantless propulsion systems that use thin, large, lightweight membranes to convert the momentum of light from the Sun into thrust for space navigation. The conceptually simple nature of such a fascinatin... ver más
Revista: Aerospace

 
Saad Chahba, Guillaume Krebs, Cristina Morel, Rabia Sehab and Ahmad Akrad    
The electric urban air mobility sector has gained significant attraction in public debates, particularly with the proliferation of announcements demonstrating new aerial vehicles and the infrastructure that goes with them. In this context, the developmen... ver más
Revista: Aerospace