Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 8 (2021)  /  Artículo
ARTÍCULO
TITULO

Design and Structural Analyses of a Reciprocating S1223 High-Lift Wing for an RA-Driven VTOL UAV

Johnson O. Imumbhon    
Mohammad D. Alam and Yiding Cao    

Resumen

In the design stage of an aircraft, structural analyses are commonly employed to test the integrity of the aircraft components to demonstrate the capability of the structural elements to withstand what they are designed for, as well as predict potential failure of the components. This research focused on the structural design and analysis of a high-lift, low Reynolds number airfoil profile, the Selig S1223, under reciprocating inertial force loading, to determine the feasibility of its use in a new reciprocating airfoil (RA) driven VTOL UAV. The material selected for the wing structures including ribs, spars, and skin, was high-strength carbon fiber. The wing was designed in SolidWorks, while finite element analysis was performed with ANSYS mechanical in conjunction with the inertia forces due to the reciprocating motion of the wing and the lift and drag forces that were derived from the aerodynamic wing analyses. The structural stress and strain determined under the loading conditions were satisfactory and the designed wing could sustain the high reciprocating inertia forces in the RA-driven VTOL UAV module. The results of this study indicate that the Selig S1223 airfoil profile, due to its superior performance at low Reynolds numbers, high-lift, and reduced noise characteristics at low angles of attack, combined with the use of the high strength carbon fiber, proves to be an excellent choice for this RA-driven aircraft application.

 Artículos similares

       
 
Luisa Boni, Marco Bassetto and Alessandro A. Quarta    
Photonic solar sails are a class of advanced propellantless propulsion systems that use thin, large, lightweight membranes to convert the momentum of light from the Sun into thrust for space navigation. The conceptually simple nature of such a fascinatin... ver más
Revista: Aerospace

 
Yan Dong, Jian Zhang, Shaofeng Zhong and Yordan Garbatov    
The study aims to develop a simplified strength assessment method for the preliminary structural design of a semi-submersible floating offshore wind turbine platform. The method includes load cases with extreme wave load effects and a load case dominated... ver más

 
Marina Tenório, Rui Ferreira, Victor Belafonte, Filipe Sousa, Cláudio Meireis, Mafalda Fontes, Inês Vale, André Gomes, Rita Alves, Sandra M. Silva, Dinis Leitão, André Fontes, Carlos Maia, Aires Camões and Jorge M. Branco    
Revista: Applied Sciences

 
Ligang Qu, Peng Li, Guangming Lv, Jing Li and Xian Luo    
Within the double-sided countersunk riveting process of aircraft wings with a composite wedge structure, riveting consistency is poor, and composite damage is severe, which seriously affects the performance and reliability of the aircraft structure. This... ver más
Revista: Aerospace

 
Srdan ?ivkovic, Nenad Stojkovic, Dragana Turnic, Marko Milo?evic and Marija Spasojevic ?urdilovic    
Welded structural hollow sections are becoming increasingly used in contemporary civil engineering buildings. More specific design techniques are needed for connections in steel structures with welded structural hollow sections than for traditional conne... ver más
Revista: Applied Sciences