Resumen
In vertical cold launch the missile starts without the function of the main engine. Over the launcher, the attitude of the missile is controlled by a set of lateral thrusters. However, a quick turn might be disturbed by various uncertainties. This study discusses the problem of the influences of disturbances and the repeatability of lateral thrusters? ignition on the pitch maneuver quality. The generic 152.4 mm projectile equipped in small, solid propellant lateral thrusters was used as a test platform. A six degree of freedom mathematical model was developed to execute the Monte-Carlo simulations of the launch phase and to prepare the flight test campaign. The parametric analysis was performed to investigate the influence of system uncertainties on quick turn repeatability. A series of ground laboratory trials was accomplished. Thirteen flight tests were completed on the missile test range. The flight parameters were measured using an onboard inertial measurement unit and a ground vision system. It was experimentally proved that the cold vertical launch maneuver could be realized properly with at least two lateral motors. It was found that the initial roll rate of the projectile and the lateral thrusters ?igniters? uncertainties could affect the pitch angle achieved and must be minimized to reduce the projectile dispersion.