Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Machine Learning to Classify Driving Events Using Mobile Phone Sensors Data

Yazan Alqudah    
Belal Sababha    
Esam Qaralleh    
Tarek Yousseff    

Resumen

With the ever-increasing vehicle population and introduction of autonomous and self-driving cars, innovative research is needed to ensure safety and reliability on the road. This work introduces an innovative solution that aims at understanding vehicle behavior based on sensors data. The behavior is classified according to driving events. Understanding driving events can play a significant role in road safety and estimating the expense and risks of driving and consuming a vehicle. Rather than relying on the distance and time driven, driving events can provide a more accurate measure of vehicle driving consumption.  This measure will become more valuable as more autonomous vehicles and more ride sharing applications are introduced to roads around the world. Estimating driving events can also help better design the road infrastructure to reduce energy consumption.  By sharing data from official vehicles and volunteers, crowd sensing can be used to better understand congestion and road safety. This work studies driving events and proposes using machine learning to classify these events into different categories. The acquired data is collected using embedded mobile device motion sensors and are used to train machine learning algorithms to classify the events.

 Artículos similares

       
 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water

 
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic    
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b... ver más

 
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más

 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Rejath Jose, Faiz Syed, Anvin Thomas and Milan Toma    
The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library?a Python-based machine learning toolkit?to construct and refine predictive models for... ver más
Revista: Applied Sciences