Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Pengelompokan Wilayah Madura Berdasar Indikator Pemerataan Pendidikan Menggunakan Partition Around Medoids Dan Validasi Adjusted Random Index

Budi Dwi Satoto    
Bain Khusnul Khotimah    
Iswati Iswati    

Resumen

Abstrak? Pemerataan pendidikan di Indonesia telah menjadi perhatian pemerintah sejak lama. Namun hingga saat ini, pendidikan di Indonesia masih belum merata. Hal tersebut dapat dilihat dari rendahnya nilai Angka Partisisipasi Kasar (APK) dan Angka Partisipasi Murni (APM) di daerah-daerah tertentu serta belum meratanya sarana dan prasarana pendidikan. Adapun tujuan penelitian ini adalah memberikan informasi kepada pemerintah setempat mengenai kondisi pendidikan di wilayahnya sehingga dapat menghasilkan kebijakan yang tepat mengenai pengembangan infrastuktur pendidikan dan distribusi guru bantu. Clustering adalah metode data mining yang membagi data kedalam kelompok yang mempunyai objek yang karakteristik sama. Penelitian ini menggunakan metode clustering Partition Around  Medoids (PAM) dengan 3 distance measure: Manhattan, Euclidean dan Canberra distance. Untuk mengukur kualitas hasil clustering, digunakan nilai Adjusted Rand Index (ARI). Semakin besar nilai ARI, semakin baik kualitas cluster. Dari 3 kali ujicoba diperoleh rata-rata nilai ARI untuk Euclidean distance sebesar 0.799, Manhattan distance dengan rata-rata sebesar 0.738 dan Canberra distance sebesar 0.163. Sedangkan pengelompokan terbaik diperoleh menggunakan Euclidean distance dengan nilai ARI sebesar 0.825 dan kecocokan dengan label asli sebesar 83.33%. Dari pengelompokan terbaik menghasilkan kelompok pemerataan tinggi terdiri dari 11 kecamatan, kelompok pemerataan sedang  terdiri dari 15 kecamatan dan kelompok pemerataan rendah terdiri dari 46 kecamatan. Kata Kunci? indikator pemerataan pendidikan, clustering, Partition Around Medoid, distance measure, Adjusted Random IndexAbstract?Distribution of education in Indonesia has become government's attention for a long time. But until now, education in Indonesia is still not evenly distributed. This can be seen from the low value of Participation Rough figures and net enrollment ratio in certain areas as well as uneven educational facilities. The purpose of this research is to provide information to local authorities about the state of education in local region to produce an appropriate policy regarding development of educational infrastructure and teachers assistant distribution. Clustering is a data mining method that divides data into several groups with the same object characteristics. This research used Partition Around Medoids methods with 3 distance measure that contain Manhattan, Euclidean and Canberra distance. Adjusted Random Index used to measure the quality of clustering results. From 3 times sampling, better value of ARI Euclidean distance 0.799,  Manhattan distance 0.738 and Canberra distance 0.163  while the best clustering obtained  is Euclidean distance with value of ARI 0.825 and compatibility with the original label 83.33%. it is produces high equity group composed of 11 districts with equity groups are composed of 15 districts and low equity group consists of 46 sub-districts. Keywords?Indicator of Educational Equity, Clustering, Partition Around Medoid, Distance Measure, Adjusted Random Index .

 Artículos similares

       
 
Amang Sudarsono, Anang Siswanto, Heru Iswanto, Qoirul Setiawan     Pág. 1 - 17
Recently, in the distance learning system, video conferencing becomes one of expected course material delivery systems for creating a virtual class such that lecturer and student which are separated at long distance can engage a learning activity as well... ver más

 
Maritza Elena Turizo Arzuza     Pág. 263 - 273
En la sociedad contemporánea, la tecnología aporta grandes beneficios a los procesos formativos y a la gestión de conocimiento. Ante la avalancha de productos multimedia, la educación en Latinoamérica acoge la virtualidad como complemento de la actividad... ver más

 
Rozzi Kesuma Dinata    
Pada penelitian ini diimplementasikan algoritma K-Nearest Neighbor dalam pengklasifikasian Sekolah Menengah Pertama/Sederajat berdasarkan peminatan calon siswa. Tujuan penelitian ini adalah untuk memudahkan pengguna dalam menemukan sekolah SMP/sederajat ... ver más

 
Supria Supria,Depandi Enda,Muhamad Nasir     Pág. 178 - 184
Sistem kendali robot saat ini telah banyak dibuat dengan menggunakan berbagai metode seperti sensor accelerometer, sensor suara, leap motion. Pada penelitian ini diusulkan pengenalan bentuk tangan secara real time menggunakan leap motion dan K-Nearest Ne... ver más

 
Agus Santosa Sudjono     Pág. pp. 6 - 15
Concrete is known as a porous building material, this can causes materials outside the concrete mass infiltrate into the concrete. Concrete structures constructed around the beach/seashore tend to have deterioration problems due to salt attack. This pape... ver más