Resumen
Several studies investigated the influence of infills on the response of reinforced concrete (RC) frames. However, possible shear brittle failures are generally neglected. The interaction between the infill panels and the surrounding frames can lead to anticipated brittle-type failures that should be considered in code-based assessment of lateral seismic capacity. This paper investigates, by means of simplified pushover analyses, on the effect of infills on the lateral seismic capacity explicitly considering possible brittle failures in unconfined beam-column joints or in columns. Archetype buildings representative of existing gravity load designed (GLD) RC frames of three different height ranges are obtained with a simulated design process and a sensitivity analysis is performed to investigate on the effect of infill consistency on the capacity. Moreover, possible alternative local retrofit interventions devoted to avoiding brittle failures are considered, evaluating their relative efficacy in case of different infill typologies. It is seen that for the considered existing GLD buildings, the attainment of life safety limit state is premature and happens before the damage limitation limit state. The capacity can be increased with application of local retrofit interventions. However, the retrofit efficacy varies depending on the infills consistency if the horizontal action transferred from the infills to the surrounding frame is not absorbed by the retrofit solution.