Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Pro-active Multi-Dimensional Recommender System using Multi-Agents

Hend Al Tair    
Mohamed Jamal Zemerly    
Mahmoud AL-Qutayri    
Marcello Leida    

Resumen

Recommender systems currently used in many applications, including tourism, tend to simply be reactive to user request. The recommender system proposed in this paper uses multi-agents and multi-dimensional contextual information to achieve proactive behavior. User profile and behavior get implicitly incorporated and subsequently updated in the system. The recommender system has been developed and applied to the tourism domain. It was tested and evaluated by relatively large set of real users The evaluation conducted shows that most of the users are satisfied with the functionality of the system and its ability to produce the recommendation adaptively and proactively taking into considerations different factors.

 Artículos similares

       
 
Wei Chen, Yihao Zhang, Yantuan Xian and Yonghua Wen    
Tremendous academic articles face serious information overload problems while supporting literature searches. Finding a research article in a relevant domain that meets researchers? requirements is challenging. Hence, different paper recommendation model... ver más
Revista: Applied Sciences

 
Hyeon Jo, Jong-hyun Hong and Joon Yeon Choeh    
In recent years, virtual online communities have experienced rapid growth. These communities enable individuals to share and manage images or websites by employing tags. A collaborative tagging system (CTS) facilitates the process by which internet users... ver más
Revista: Applied Sciences

 
Chenhong Luo, Yong Wang, Bo Li, Hanyang Liu, Pengyu Wang and Leo Yu Zhang    
Recommender systems search the underlying preferences of users according to their historical ratings and recommend a list of items that may be of interest to them. Rating information plays an important role in revealing the true tastes of users. However,... ver más
Revista: Algorithms

 
Manolis Remountakis, Konstantinos Kotis, Babis Kourtzis and George E. Tsekouras    
Recommender systems have become indispensable tools in the hotel hospitality industry, enabling personalized and tailored experiences for guests. Recent advancements in large language models (LLMs), such as ChatGPT, and persuasive technologies have opene... ver más
Revista: Information

 
Leyla Gamidullaeva, Alexey Finogeev, Mikhail Kataev and Larisa Bulysheva    
Despite of tourism infrastructure and software, the development of tourism is hampered due to the lack of information support, which encapsulates various aspects of travel implementation. This paper highlights a demand for integrating various approaches ... ver más
Revista: Algorithms