Resumen
The subject of research is the process of forming signals in magnetic tracking systems including those used for spatial position calculation within the concepts of Industry 4.0 and Industrial Internet of Things. Such systems are based on calculating the spatial position of objects upon measurements of reference magnetic fields in low-frequency electromagnetic radiation spectrum. The goal is to develop and verify a signal model for spatial position calculating in magnetic tracking systems. The signal model is developed upon experimentally obtained dependencies of the informative signals on the distances and angles between sensor and actuator coils. Objectives: analysis of signals in magnetic tracking systems, development of tools for experimental study, mathematical interpretation of the research results along with development of the signal model, verification and use of the developed model. General scientific methods were used, including experiment, measurement, analysis, synthesis, probabilistic and statistical methods. We have obtained the following results: The structure of a signal chain of the programmable magnetic tracking systems and its implementation on the basis of PSoC of 5LP Family by Cypress Semiconductor has been disclosed. Experimental results obtained at different distances and angles between the actuator and sensor coils have been presented. For spatial positions calculation signal models that describe distribution of magnetic fields and signals of sensor coils are used. We have analyzed typical inaccuracies and ways of their minimization. For verification of the introduced signal model we propose to use the mean square deviation of normalized signals. Conclusions. A signal model for the mutual position of actuators and sensors in magnetic tracking systems has been developed. The model describes functional dependencies whose main parameters are the distances and angles between coils. Further development of the presented results implies the proposed signal model to be used when solving problems of developing and specifying algorithms of spatial position calculation, system debugging and rapid analysis, optimization of calibration procedures.