Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

A Time Series Modeling and Prediction of Wireless Network Traffic

S. Gowrishankar    
P. S. Satyanarayana    

Resumen

The number of users and their network utilization will enumerate the traffic of the network. The accurate and timely estimation of network traffic is increasingly becoming important in achieving guaranteed Quality of Service (QoS) in a wireless network. The better QoS can be maintained in the network by admission control, inter or intra network handovers by knowing the network traffic in advance. Here wireless network traffic is modeled as a nonlinear and nonstationary time series. In this framework, network traffic is predicted using neural network and statistical methods. The results of both the methods are compared on different time scales or time granularity. The Neural Network(NN) architectures used in this study are Recurrent Radial Basis Function Network (RRBFN) and Echo state network (ESN).The statistical model used here in this work is Fractional Auto Regressive Integrated Moving Average (FARIMA) model. The traffic prediction accuracy of neural network and statistical models are in the range of 96.4% to 98.3% and 78.5% to 80.2% respectively.

 Artículos similares

       
 
Yong Zhang, Xin Wang, Zongli Jiang, Junfeng Wei, Hiroyuki Enomoto and Tetsuo Ohata    
Arctic glaciers comprise a small fraction of the world?s land ice area, but their ongoing mass loss currently represents a large cryospheric contribution to the sea level rise. In the Suntar-Khayata Mountains (SKMs) of northeastern Siberia, in situ measu... ver más
Revista: Water

 
Jianzhao Liu, Liping Gao, Fenghui Yuan, Yuedong Guo and Xiaofeng Xu    
Soil water shortage is a critical issue for the Southwest US (SWUS), the typical arid region that has experienced severe droughts over the past decades, primarily caused by climate change. However, it is still not quantitatively understood how soil water... ver más
Revista: Water

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Yi Ouyang, Tao Feng, Han Feng, Xinghan Wang, Huayu Zhang and Xiaoxue Zhou    
Deformation monitoring plays a pivotal role in assessing dam safety. Interferometric Synthetic Aperture Radar (InSAR) has the advantage of obtaining an extensive range of deformation, regardless of weather conditions. The Datengxia Water Conservancy Hub ... ver más
Revista: Water

 
Altayeb A. Obaid, Elhadi M. Adam, K. Adem Ali and Tamiru A. Abiye    
The Vaal Dam catchment, which is the source of potable water for Gauteng province, is characterized by diverse human activities, and the dam encounters significant nutrient input from multiple sources within its catchment. As a result, there has been a r... ver más
Revista: Water