Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

USING ARTIFICIAL NEURAL NETWORK TO ESTIMATE REFERENCE EVAPOTRANSPIRATION

Patricia Oliveira Lucas    
Renato Dourado Maia    
Marcelo Rossi Vicente    
Caio Vinícius Leite    

Resumen

Irrigation, when rationally used, can contribute to the efficient performance of the agribusiness. Planning irrigation, monitoring the soil moisture, the rainfall and the reference evapotranspiration (ET0) is necessary for a rational water management. The FAO Penman-Monteith (FAO PM) method is the standard method for estimating ET0, but in some cases, the use of this method is restricted due to missing some climatic variables. For this reason, methods with a lower number of meteorological variables, as temperature values, are quite often used. This study aims to propose an artificial neural network (ANN) to estimate the ET0 as a function of maximum and minimum air temperatures for the city of Salinas, Minas Gerais State, Brazil. After training, validation and comparison with the Hargreaves methodology, it was observed the existence of a good correlation between the values estimated by the standard method and those estimated by ANN, with the performance index classified as optimal, better than the Hargreaves methodology one. The use of ANN proved to be an excellent alternative for ET0 estimation, reducing the costs of acquiring climatic data.

 Artículos similares

       
 
Tapan Chatterjee, Usha Rani Gogoi, Animesh Samanta, Ayan Chatterjee, Mritunjay Kumar Singh and Srinivas Pasupuleti    
Groundwater quality is one of the major concerns. Quality of the groundwater directly impacts human health, growth of plants and vegetables. Due to the severe impacts of inadequate water quality, it is imperative to find a swift and economical solution. ... ver más
Revista: Water

 
Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro    
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processin... ver más
Revista: Algorithms

 
Tamar Shabi, Yaron Ziv, Reuven Yosef and Nadav Shashar    
Global degradation of coral reefs is reflected in the destruction of shelters in various environments and threatens the stability of marine ecosystems. Artificial shelters offer an alternative, but their design could be more challenging due to limited kn... ver más

 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures

 
Ho-Jun Yoo, Hyoseob Kim, Tae-Soon Kang, Ki-Hyun Kim, Ki-Young Bang, Jong-Beom Kim and Moon-Sang Park    
Coastal erosion is caused by various factors, such as harbor development along coastal areas and climate change. Erosion has been accelerated recently due to sea level rises, increased occurrence of swells, and higher-power storm waves. Proper understand... ver más