Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Free Vibration Frequency of Thick FGM Circular Cylindrical Shells with Simply Homogeneous Equation by Using TSDT

Chih-Chiang Hong    

Resumen

The objective of this study is to provide the frequency solutions of free vibration in thick FGM circular cylindrical shells by mainly considering both shear correction coefficient and nonlinear coefficient term. This paper investigates the effects of third-order shear deformation theory (TSDT) and the varied shear correction coefficient on the free vibration of thick functionally graded material (FGM), the circular cylindrical shells with simply homogeneous equation under thermal environment. The approach of derivations are given as follows, the varied value of shear correction coefficient is included in the simple homogeneous equation. The nonlinear term of displacement field of TSDT is also included to derive the simply homogeneous equation, some reasonable simplifications in the elements of homogeneous matrix under free vibration of thick FGM circular cylindrical shells are assumed, thus, the natural frequency can be found. Three parameters effect on the frequency of thick FGM circular cylindrical shells are computed and investigated, they are nonlinear coefficient c1 term, environment temperature and power law index. There are some main conclusions obtained, generally the natural frequency results are in decreasing value with the mode shape numbers for the thicker circular cylindrical shells. The values of natural frequencies are also affected by the nonlinear coefficient term.

 Artículos similares

       
 
Li Ruan, Dingyong Yu, Jian Bao and Jinxin Zhao    
In this study, the effect of additional positions of rigid splitter plates on the response characteristics of tandem cylinders at a Reynolds number of 150 and a fixed distance ratio of 5.0 was numerically investigated via the computational fluid dynamics... ver más

 
Carlos Enrique Valencia Murillo, Miguel Ernesto Gutierrez Rivera, Nicolas Flores Samano and Luis David Celaya Garcia    
This contribution presents a finite element shell model capable of performing linear vibration analyses of shell-type structures made of functionally graded material (FGM). The model is based on the seven-parameter spectral/hp finite element formulation,... ver más
Revista: Applied Sciences

 
Jae-Hyeon Park, Sung-Woo Park, Jong-Pil Kim and Hyun-Ung Oh    
A novel passive vibration-damping device is proposed and investigated for a large deployable solar array. One strategy for achieving high damping in a solar panel is using a yoke structure comprising a hyperelastic shape memory alloy and multiple viscous... ver más
Revista: Aerospace

 
Xing Zou, Botao Xie, Zhipeng Zang, Enbang Chen and Jing Hou    
Sand waves are commonly formed on the sandy seabed of the continental shelf and characterized by their regular wave-like shape. When a submarine pipeline is laid on this type of seabed, it often experiences free spans due to the unevenness of the seabed.... ver más

 
Yaping Zhao, Yanrong Li, Jianjun Feng, Mengfan Dang, Yajing Ren and Xingqi Luo    
Tubular turbines are widely used in low water head and tidal power development due to their straight flow path, simple structure, and wide efficient area. However, the severe vibration during actual operation greatly affects the safe operation of the tub... ver más
Revista: Water