Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Numerical Simulations of Black Hole Accretion Flows

Agnieszka Janiuk    
Konstantinos Sapountzis    
Jeremy Mortier    
Ireneusz Janiuk    

Resumen

We model the structure and evolution of black hole accretion disks using numerical simulations. The numerics is governed by the equations of general relativistic magneto-hydrodynamics (GRMHD). Accretion disks and outflows can be found at the base of very energetic ultra-relativistic jets produced by cosmic explosions, so called gamma-ray bursts (GRBs). Another type of phenomena are blazars, with jets emitted from the centers of galaxies.Long-lasting, detailed computations are essential to determine the physics of these explosions, and confront the theory with potential observables. From the point of view of numerical methods and techniques, three ingredients need to be considered. First, the numerical scheme must work in a conservative manner, which is achieved by solving a set of non-linear equations to advance the conserved quantities from one time step to the next. Second, the efficiency of computations depends on the code parallelization methods. Third, the analysis of results is possible via the post-processing of computed physical quantities, and visualization of the flow properties. This is done via implementing packages and libraries that are standardized in the field of computational astrophysics and supported by community developers.In this paper, we discuss the physics of the cosmic sources. We also describe our numerical framework and some technical issues, in the context of the GRMHD code which we develop. We also present a suite of performance tests, done on the High-Performance Computer cluster (HPC) in the Center for Mathematical Modeling of the Warsaw University.

 Artículos similares

       
 
Haotian Luo, Weijun Pan, Yidi Wang and Yuming Luo    
Today, aviation has grown significantly in importance. However, the challenge of flight delays has become increasingly severe due to the need for safe separation between aircraft to mitigate wake turbulence effects. The primary emphasis of this investiga... ver más
Revista: Aerospace

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Sajjad E. Rasheed, Duaa Al-Jeznawi, Musab Aied Qissab Al-Janabi and Luís Filipe Almeida Bernardo    
The structural stability of pipe pile foundations under seismic loading stands as a critical concern, demanding an accurate assessment of the maximum settlement. Traditionally, this task has been addressed through complex numerical modeling, accounting f... ver más

 
Weiyuan Zhu, Jiaqi Cheng, Yutao Pang, Hongbin An, Junpeng Zou, Jie Ren and Cheng Zhang    
This study proposes a new form of underground diaphragm wall foundation with hexagonal sections, called the grid pile foundation (GPF), which is used for long-span bridges. To investigate the lateral bearing capacity characteristics of the integrated pil... ver más
Revista: Applied Sciences

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace