Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Runtime-Aware Architectures: A First Approach

Mateo Valero    
Miquel Moreto    
Marc Casas    
Eduard Ayguade    
Jesus Labarta    

Resumen

In the last few years, the traditional ways to keep the increase of hardware performance at the rate predicted by Moore's Law have vanished. When uni-cores were the norm, hardware design was decoupled from the software stack thanks to a well defined Instruction Set Architecture (ISA). This simple interface allowed developing applications without worrying too much about the underlying hardware, while hardware designers were able to aggressively exploit instruction-level parallelism (ILP) in superscalar processors. With the irruption of multi-cores and parallel applications, this simple interface started to leak. As a consequence, the role of decoupling again applications from the hardware was moved to the runtime system. Efficiently using the underlying hardware from this runtime without exposing its complexities to the application has been the target of very active and prolific research in the last years.Current multi-cores are designed as simple symmetric multiprocessors (SMP) on a chip. However, we believe that this is not enough to overcome all the problems that multi-cores already have to face. It is our position that the runtime has to drive the design of future multi-cores to overcome the restrictions in terms of power, memory, programmability and resilience that multi-cores have. In this paper, we introduce a first approach towards a Runtime-Aware Architecture (RAA), a massively parallel architecture designed from the runtime's perspective.

 Artículos similares

       
 
Soobin Jeon, Sang-Young Park and Geuk-Nam Kim    
CANYVAL-C is a formation-flying mission that demonstrates a coronagraph utilizing two CubeSats. The coronagraph is a space telescope that blocks sunlight to examine the overcast regions around the sun. It is composed of optical and occult segments. Two s... ver más
Revista: Aerospace

 
Santiago Moreno-Carbonell and Eugenio F. Sánchez-Úbeda    
The Linear Hinges Model (LHM) is an efficient approach to flexible and robust one-dimensional curve fitting under stringent high-noise conditions. However, it was initially designed to run in a single-core processor, accessing the whole input dataset. Th... ver más
Revista: Algorithms

 
Jessica S. Ortiz, Richard S. Pila, Joel A. Yupangui and Marco M. Rosales    
The teaching?learning process developed was based on the effective integration of the Hardware in the Loop (HIL) technique to control a brewing process. This required programming the autonomous control of the system and uploading it to a physical control... ver más
Revista: Applied Sciences

 
Duc Thien Tran, Tien Dat Nguyen, Minh Khiem Tran and Kyoung Kwan Ahn    
A control method for a cable-driven robot in a teleoperation system is proposed using the hardware-in-the-loop (HIL) simulation technique. The main components of the teleoperated robotic system are a haptic device, also called a delta robot, and a cable-... ver más
Revista: Applied Sciences

 
Monika Rybczak and Krystian Kozakiewicz    
Today, specific convolution neural network (CNN) models assigned to specific tasks are often used. In this article, the authors explored three models: MobileNet, EfficientNetB0, and InceptionV3 combined. The authors were interested in investigating how q... ver más
Revista: Algorithms