Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Nova Economia  /  Núm: v. 15 n Par: 0 (2005)  /  Artículo
ARTÍCULO
TITULO

A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

Juliana Yim    
Heather Mitchell    

Resumen

O presente artigo analisa o desempenho das redes neurais híbridas para prever falência de empresas no Brasil. Esta nova técnica foi comparada com modelos estatísticos tradicionais. Os resultados sugerem que as redes neurais híbridas são superiores as técnicas estatísticas um ano antes do evento. Isto sugere que para pesquisadores, políticos e outros interessados em ?early warning systems?, redes neurais híbridas podem ser uma poderosa alternativa para prever falência de empresas.

 Artículos similares

       
 
Anita M. Bunea, Mariangela Guidolin, Piero Manfredi and Pompeo Della Posta    
The paper applies innovation diffusion models to study the adoption process of solar PV energy in the UK from 2010 to 2021 by comparing the trajectories between three main categories, residential, commercial, and utility, in terms of both the number of i... ver más
Revista: Forecasting

 
Apostolos Ampountolas    
Over the past years, cryptocurrencies have drawn substantial attention from the media while attracting many investors. Since then, cryptocurrency prices have experienced high fluctuations. In this paper, we forecast the high-frequency 1 min volatility of... ver más

 
Abhiru Aryal, Albira Acharya and Ajay Kalra    
Climate change has caused uncertainty in the hydrological pattern including weather change, precipitation fluctuations, and extreme temperature, thus triggering unforeseen natural tragedies such as hurricanes, flash flooding, heatwave and more. Because o... ver más
Revista: Forecasting

 
Seyyed Ali Zeytoon Nejad MOOSAVIAN     Pág. 207 - 238
JEL. J10, J12, J13, J16, J21, J22.

 
Daniela Rybárová, Helena Majdúchová, Peter ?tetka and Darina Lu?cíková    
The aim of this paper is to assess the reliability of alternative default prediction models in local conditions, with subsequent comparison with other generally known and globally disseminated default prediction models, such as Altman?s Z-score, Quick Te... ver más