Resumen
The aim of this study was to size up and evaluate a fixed bed experimental silo-dryer-aerator with four static grain drying cells for segregation lots, through simulations with mathematical equations and a computational fluid dynamics (CFD) system. The average specific energy consumption of the dryer was 2,998.56 kJ kg-1 of evaporated water. At the global scale, the amount of heat needed to complete a grain drying was 22,283.84 kcal (5,325.96 kJ kg-1) and the amount of heat required to complete the cooling of a stored grain mass was 3,525 kcal (842.49 kJ kg-1). The drying equipment responded positively to the dynamic aspects of air, distribution, flow, pressure, speed and heating. The results obtained allow us to conclude that the silo-dryer-aerator prototype was characterized as a viable and sustainable tool, making it possible to perform the drying and storage of grains in standardized and segregated lots, according to genetic characterization, minimizing quantitative and qualitative losses.