Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Calculation of the green?s function of boundary value problems for linear ordinary differential equations

Irina Belyaeva    
Nikalay Chekanov    
Natalia Chekanova    
Igor Kirichenko    
Oleg Ptashny    
Tetyana Yarkho    

Resumen

The Green?s function is widely used in solving boundary value problems for differential equations, to which many mathematical and physical problems are reduced. In particular, solutions of partial differential equations by the Fourier method are reduced to boundary value problems for ordinary differential equations. Using the Green's function for a homogeneous problem, one can calculate the solution of an inhomogeneous differential equation. Knowing the Green's function makes it possible to solve a whole class of problems of finding eigenvalues in quantum field theory.The developed method for constructing the Green?s function of boundary value problems for ordinary linear differential equations is described. An algorithm and program for calculating the Green's function of boundary value problems for differential equations of the second and third orders in an explicit analytical form are presented. Examples of computing the Green's function for specific boundary value problems are given. The fundamental system of solutions of ordinary differential equations with singular points needed to construct the Green's function is calculated in the form of generalized power series with the help of the developed programs in the Maple environment. An algorithm is developed for constructing the Green's function in the form of power series for second-order and third-order differential equations with given boundary conditions. Compiled work programs in the Maple environment for calculating the Green functions of arbitrary boundary value problems for differential equations of the second and third orders. Calculations of the Green's function for specific third-order boundary value problems using the developed program are presented. The obtained approximate Green?s function is compared with the known expressions of the exact Green?s function and very good agreement is found

 Artículos similares

       
 
Qi Hong, Tianyi Zhou and Junde Qi    
Polishing force is one of the key process parameters in the polishing process of blisk blades, and its control accuracy will affect the surface quality and processing accuracy of the workpiece. The contact mechanism between the polishing surface and flap... ver más
Revista: Applied Sciences

 
Jan Erik Zeriadtke, Joël Martin and Viola Wartemann    
The performance of hybrid rocket engines is significantly influenced by the fuel geometry. Burnback simulations, to determine the fuel surface and fluid volume, are therefore an important tool for preliminary design. This work presents a method for the s... ver más
Revista: Aerospace

 
Lin Ma, Fuheng Ma, Wenhan Cao, Benxing Lou, Xiang Luo, Qiang Li and Xiaoniao Hao    
A original strategy for optimizing the inversion of concrete dam parameters based on the multi-strategy improved Sooty Tern Optimization algorithm (MSSTOA) is proposed to address the issues of low efficiency, low accuracy, and poor optimizing performance... ver más
Revista: Water

 
Chaopeng Yang, Jiacai Pan, Kai Wei, Mengjie Lu and Shihao Jia    
Ocean currents make it difficult for unmanned surface vehicles (USVs) to keep a safe distance from obstacles. Effective path planning should adequately consider the effect of ocean currents on USVs. This paper proposes an improved A* algorithm based on a... ver más

 
Yuting Bai, Yijie Niu, Zhiyao Zhao, Xuebo Jin and Xiaoyi Wang    
The phenomenon of algal bloom seriously affects the function of the aquatic ecosystems, damages the landscape of urban river and lakes, and threatens the safety of water use. The introduction of a multi-attribute decision-making method avoids the shortco... ver más
Revista: Water