Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Ingeniería   /  Vol: 22 Núm: 3 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Application of Analytical Uncertainty Costs of Solar,Wind and Electric Vehicles in Optimal Power Dispatch

Juan Arévalo    
Fabian Santos    
Sergio Rivera    

Resumen

AbstractDownloadsReferencesHow to Cite

 Artículos similares

       
 
Didem P. Aykas and Luis Rodriguez-Saona    
In this study, we introduce an approach for quickly profiling the nutritional content of fruit juices by using a portable Fourier transform mid-infrared (FT-IR) device. This method enables real-time prediction and simultaneous analysis of key components,... ver más
Revista: Applied Sciences

 
Jianan Yin, Mingwei Zhang, Yuanyuan Ma, Wei Wu, He Li and Ping Chen    
Airport arrival and departure movements are characterized by high dynamism, stochasticity, and uncertainty. Therefore, it is of paramount importance to predict and analyze surface taxi time accurately and scientifically. This paper conducts a comprehensi... ver más
Revista: Applied Sciences

 
Kostiantyn Medvediev, Anna Kharchenko, Anzhelika Stakhova, Yurii Yevseichyk, Vitalii Tsybulskyi and Adrián Bekö    
The proposed methodology aims to determine and forecast the technical condition of bridge elements, which could serve as an advanced engineering tool for assessing reliability and durability. It is developed based on fundamental studies that synthesize t... ver más
Revista: Infrastructures

 
Zhiyuan Hu, Peng Yu, Guohua Xu, Yongjie Shi, Feng Gu and Aijun Zou    
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. ... ver más
Revista: Aerospace

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace