Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Andean Geology  /  Vol: 48 Núm: 3 Par: 0 (2021)  /  Artículo
ARTÍCULO
TITULO

The likely Quaternary active El Arrayán fault, Santiago, Chile

Jose Araya    
Gregory P. De Pascale    
Rodrigo Mardel    
Sergio A. Sepúlveda    

Resumen

Understanding the location and nature of Quaternary active crustal faults is critical to the reduction of both fault rupture and strong ground motions hazards in built environments. Recent work along the San Ramón Fault (SRF) demonstrates that crustal seismic sources are important hazards within the Santiago Metropolitan region of Chile. In this paper, we present the evidence of a second likely Quaternary active fault (the El Arrayán Fault, EAF) that runs through the northeastern part of Santiago, in the Lo Barnechea area. The EAF is a strike-slip fault zone at least 13 km-long, has a steep dip (mean dip 77º NNE), and a WNW-ESE general trend (~110º) that cuts across folded rocks of the Abanico Formation and Quaternary deposits. Sequences of meter-wide fault rocks in El Arrayán area are coincident with the tectonic geomorphology of the EAF, with fault scarps, deflected streams, saddles, ?island hills?, sag ponds and linear valleys in the La Dehesa area and coincident with fault strike from the bedrock exposures. Although direct dating is not yet available, fault exposures tied to fault-related tectonic and geomorphic features that crosscut Late-Quaternary morphologies and deposits (including hillslopes, ridges, landslides and alluvial fans), provides strong evidence that the EAF is a Quaternary active and seismogenic crustal fault. Sinistral slickensides and left-lateral deflected streams indicates a left-lateral kinematics (with slight up to the north reverse motion) for the EAF. Due to the location, geometry, kinematics and likely Quaternary activity of the EAF, this structure is interpreted as an arc-oblique transfer zone of the West Andean Thrust (WATS). If the EAF has stick-slip behaviour, it is potentially an important source of fault rupture and strong ground motions and could be responsible for earthquakes up to Mw 6.4 based on earthquake scaling laws and microseismicity observations in and around Santiago. The lack of fault zone avoidance criteria (i.e., do not build in and around active faults) in Chilean law, requires immediate enhanced fault mapping, legislation and the implementation of active fault rupture avoidance areas to reduce the risk associated with active crustal structures in the built environment.

 Artículos similares

       
 
Nikolaos Makrakis, Prodromos N. Psarropoulos and Yiannis Tsompanakis    
Large-scale lifelines in seismic-prone regions very frequently cross areas that are characterized by active tectonic faulting, as complete avoidance might be techno-economically unfeasible. The resulting Permanent Ground Displacements (PGDs) constitute a... ver más
Revista: Infrastructures

 
Marcos Podesta,Gustavo Ortiz,Paola Orozco,Patricia Alvarado,Facundo Fuentes     Pág. 327 - 344
The Iglesia basin, in the San Juan Province, is the northern part of a Cenozoic piggy-back basin (the Iglesia-Calingasta-Uspallata basin), located above of the active flat-slab subduction zone of western Argentina. This basin is located between two mount... ver más
Revista: Andean Geology

 
Gregory P. De Pascale     Pág. 175 - 183
Understanding the location and nature of Quaternary active crustal faults is critical to reduce both the impact of fault rupture and strong ground motions hazards (when these faults rupture causing earthquakes). It is also important for understanding how... ver más
Revista: Andean Geology

 
Abdelrahman Khalifa, Bashar Bashir, Abdullah Alsalman and Nazik Ögretmen    
The Abu-Dabbab area, located in the central part of the Egyptian Eastern Desert, is an active seismic region where micro-earthquakes (?ML < 2.0) are recorded regularly. Earthquake epicenters are concentrated along an ENE?WSW trending pattern. In this stu... ver más

 
Paolo Madonia, Marianna Cangemi, Ygor Oliveri and Carlo Germani    
Groundwater from karst circulation systems of Central Italy were sampled and analyzed, in 2018, for delineating a preliminary, general geochemical framework of their relationship with neotectonics, in an area characterized by a frequent and often destruc... ver más
Revista: Water