Resumen
The need to improve the adequacy of conventional models of the source data uncertainty in order to undertake research using fuzzy mathematics methods has led to the development of natural improvement in the analytical description of the fuzzy numbers' membership functions. Given this, in particular, in order to describe the membership functions of the three-parametric fuzzy numbers of the (L-R)-type, the modification implies the following. It is accepted that these functions' parameters (a modal value, the left and right fuzzy factors) are not set clearly by their membership functions. The numbers obtained in this way are termed the second-order fuzzy numbers (bi-fuzzy). The issue, in this case, is that there are no rules for operating on such fuzzy numbers. This paper has proposed and substantiated a system of operating rules for a widely used and effective class of fuzzy numbers of the (L-R)-type whose membership functions' parameters are not clearly defined. These rules have been built as a result of the generalization of known rules for operating on regular fuzzy numbers. We have derived analytical ratios to compute the numerical values of the membership functions of the fuzzy results from executing arithmetic operations (addition, subtraction, multiplication, division) over the second-order fuzzy numbers. It is noted that the resulting system of rules is generalized for the case when the numbers-operands' fuzziness order exceeds the second order. The examples of operations execution over the second-order fuzzy numbers of the (L-R)-type have been given.