|
|
|
Shweta More, Moad Idrissi, Haitham Mahmoud and A. Taufiq Asyhari
The rapid proliferation of new technologies such as Internet of Things (IoT), cloud computing, virtualization, and smart devices has led to a massive annual production of over 400 zettabytes of network traffic data. As a result, it is crucial for compani...
ver más
|
|
|
|
|
|
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ...
ver más
|
|
|
|
|
|
Changchang Li, Botao Xu, Zhiwei Chen, Xiaoou Huang, Jing (Selena) He and Xia Xie
University students, as a special group, face multiple psychological pressures and challenges, making them susceptible to social anxiety disorder. However, there are currently no articles using machine learning algorithms to identify predictors of social...
ver más
|
|
|
|
|
|
Lei Yang, Mengxue Xu and Yunan He
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t...
ver más
|
|
|
|
|
|
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ...
ver más
|
|
|