Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Development of an improved method for finding a solution for neuro-fuzzy expert systems

Olha Salnikova    
Olga Cherviakova    
Oleg Sova    
Ruslan Zhyvotovskyi    
Serhii Petruk    
Taras Hurskyi    
Andrii Shyshatskyi    
Andrey Nos    
Yevhenii Neroznak    
Ihor Proshchyn    

Resumen

Nowadays, artificial intelligence has entered into all spheres of human activity. However, there are some problems in the analysis of objects, for example, there is a priori uncertainty about the state of objects and the analysis takes place in a difficult situation against the background of intentional (natural) interference and uncertainty. The best solution in this situation is to integrate with the data analysis of information systems and artificial neural networks. This paper develops an improved method for finding solutions for neuro-fuzzy expert systems. The proposed method allows increasing the efficiency and reliability of making decisions about the state of the object. Increased efficiency is achieved through the use of evolving neuro-fuzzy artificial neural networks, as well as an improved procedure for their training. Training of evolving neuro-fuzzy artificial neural networks is due to learning their architecture, synaptic weights, type and parameters of the membership function, as well as the application of the procedure of reducing the dimensionality of the feature space. The analysis of objects also takes into account the degree of uncertainty about their condition. In the proposed method, when searching for a solution, the same conditions are calculated once, which speeds up the rule revision cycle and instead of the same conditions of the rules, references to them are used. This reduces the computational complexity of decision-making and does not accumulate errors in the training of artificial neural networks as a result of processing the information coming to the input of artificial neural networks. The use of the proposed method was tested on the example of assessing the state of the radio-electronic environment. This example showed an increase in the efficiency of assessment at the level of 20?25 % by the efficiency of information processing

 Artículos similares

       
 
Feng Cheng, Shuchun Jia and Wei Gao    
In order to tackle the issue of carbon emissions in logistics and distribution, a vehicle routing model was proposed with the aim of minimizing the overall cost, which includes the vehicle?s fixed cost, transportation costs, and carbon emission costs. An... ver más
Revista: Applied Sciences

 
Yanjun Li, Takaaki Yoshimura, Yuto Horima and Hiroyuki Sugimori    
The detection of coronary artery stenosis is one of the most important indicators for the diagnosis of coronary artery disease. However, stenosis in branch vessels is often difficult to detect using computer-aided systems and even radiologists because of... ver más
Revista: Algorithms

 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation

 
Javensius Sembiring, Rianto Adhy Sasongko, Eduardo I. Bastian, Bayu Aji Raditya and Rayhan Ekananto Limansubroto    
This paper investigates the development of a deep learning-based flight control model for a tilt-rotor unmanned aerial vehicle, focusing on altitude, speed, and roll hold systems. Training data is gathered from the X-Plane flight simulator, employing a p... ver más
Revista: Aerospace

 
Jing Luo, Yuhang Zhang, Jiayuan Zhuang and Yumin Su    
The development of intelligent task allocation and path planning algorithms for unmanned surface vehicles (USVs) is gaining significant interest, particularly in supporting complex ocean operations. This paper proposes an intelligent hybrid algorithm tha... ver más