Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Data Compression for Climate Data

Michael Kuhn    
Julian Kunkel    
Thomas Ludwig    

Resumen

The different rates of increase for computational power and storage capabilities of supercomputers turn data storage into a technical and economical problem. Because storage capabilities are lagging behind, investments and operational costs for storage systems have increased to keep up with the supercomputers' I/O requirements. One promising approach is to reduce the amount of data that is stored. In this paper, we take a look at the impact of compression on performance and costs of high performance systems. To this end, we analyze the applicability of compression on all layers of the I/O stack, that is, main memory, network and storage. Based on the Mistral system of the German Climate Computing Center (Deutsches Klimarechenzentrum, DKRZ), we illustrate potential performance improvements and cost savings. Making use of compression on a large scale can decrease investments and operational costs by 50% without negatively impacting performance. Additionally, we present ongoing work for supporting enhanced adaptive compression in the parallel distributed file system Lustre and application-specific compression.

 Artículos similares

       
 
Rongliang Cheng, Xiaofeng Han and Zhiqiang Wu    
It is of great significance to identify the spatiotemporal stress distribution characteristics to ensure the safety of a super-high arch dam during the initial operation stage. Taking the 285.5 m-high Xiluodu Dam as an example, the spatiotemporal distrib... ver más
Revista: Water

 
Alireza Kakoee, Jacek Hunicz and Maciej Mikulski    
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression igniti... ver más

 
Varsha S. Lalapura, Veerender Reddy Bhimavarapu, J. Amudha and Hariram Selvamurugan Satheesh    
The Recurrent Neural Networks (RNNs) are an essential class of supervised learning algorithms. Complex tasks like speech recognition, machine translation, sentiment classification, weather prediction, etc., are now performed by well-trained RNNs. Local o... ver más
Revista: Algorithms

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Bora Pulatsu, Rhea Wilson, Jose V. Lemos and Neboj?a Mojsilovic    
Unreinforced masonry (URM) walls are common load-bearing structural elements in most existing buildings, consisting of masonry units (bricks) and mortar joints. They indicate a highly nonlinear and complex behaviour when subjected to combined compression... ver más
Revista: Infrastructures