Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Sentiment Analysis for Customer Review: Case Study of GO-JEK Expansion

Alifia Revan Prananda    
Irfandy Thalib    

Resumen

Background: Market prediction is an important thing that needs to be analyzed deeply. Business intelligence becomes an important analysis procedure for analyzing the market demand and satisfaction. Since business intelligence needs a deep analysis, sentiment analysis becomes a powerful algorithm for analyzing customer review regarding to the business intelligence analysis.Objective: In this study, we perform a sentiment analysis for identifying the business intelligence analysis in GO-JEK.Methods: We use Twitter posts collected from the Twint library which consists of 3111 tweets. Since the dataset did not provide a ground truth, we perform Microsoft Text Analytic for determining positive, neutral, and negative sentiment. Before applying Microsoft Text Analytic, we conduct a pre-processing step to remove the unwanted data such as duplicate tweets, image, website address, etc.Results: According to the Microsoft Text Analytic, the results are 666 positive sentiment numbers, 2055 neutral sentiment numbers, and 127 negative sentiment numbers.Conclusion:  According to these results, we conclude that most GO-JEK customers are satisfied with the GO-JEK services. In this research, we also develop classification model to predict the sentiment analysis of new data. We use some classifier algorithms such as Decision Tree, Naïve Bayes, Support Vector Machine and Neural Network. In the result, the system shows      that the decision tree provides the best performance.

 Artículos similares

       
 
Achini Adikari, Su Nguyen, Rashmika Nawaratne, Daswin De Silva and Damminda Alahakoon    
The proliferation of online hotel review platforms has prompted decision-makers in the hospitality sector to acknowledge the significance of extracting valuable information from this vast source. While contemporary research has primarily focused on extra... ver más
Revista: Applied Sciences

 
Hongyu Shao, Sizhe Pan, Yufei Song and Quanfu Li    
In the context of rapid product iteration, design conflicts arise from discrepancies in designers? understanding of user needs, influenced by subjective preferences, behavioural stances, and other factors. This paper proposes a product conceptual design ... ver más
Revista: Applied Sciences

 
Haidi Badr, Nayer Wanas and Magda Fayek    
Unsupervised domain adaptation (UDA) presents a significant challenge in sentiment analysis, especially when faced with differences between source and target domains. This study introduces Weighted Sequential Unsupervised Domain Adaptation (WS-UDA), a no... ver más
Revista: Applied Sciences

 
Mahammad Khalid Shaik Vadla, Mahima Agumbe Suresh and Vimal K. Viswanathan    
Understanding customer emotions and preferences is paramount for success in the dynamic product design landscape. This paper presents a study to develop a prediction pipeline to detect the aspect and perform sentiment analysis on review data. The pre-tra... ver más
Revista: Algorithms

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI