Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

The effect of LFG plasma sputtering power on hardness of carbon thin films on SKD11 steel using target material from battery carbon rods

Aladin Eko Purkuncoro    
Rudy Soenoko    
Dionysius Joseph Djoko Herry Santjojo    
Yudy Surya Irawan    

Resumen

Battery waste is one of waste that can damage the environment and there has not been much good processing in Indonesia. Even though, battery waste contains carbon which can be used as a target material for deposition of carbon films using plasma sputtering. The focus of this research is to determine the effect and optimum power value of plasma argon generation, so that the power generation value can produce the highest hardness value of SKD11 steel can be obtained. The method used as plasma is argon gas. Argon plasma is generated by using a 40 kHz LGF. Thin film of carbon synthesize on SKD11 steel was tested to determine the value of hardness using micro hardness Vickers. Based on the experimental result, the optimum power treatment obtained at 340 Watt with the highest average hardness value is 316.7 HV. Based on SEM-EDX observation, it can be described that comparison of atomic carbon from carbon rods without treatment (1.5 %) and carbon thin films on SKD11 with optimum power treatment (13.36 %) show different value. Number of atomic carbon of thin films on SKD11 with power treatment more higher than atomic carbon of carbon rods without treatment, it causes higher hardness value of thin films on SKD11 steel after plasma sputtering treatment on optimum power parameters than SKD11 steel without treatment. SKD11 steel that has a high hardness value used as dies, forming, and cutting that requires high hardness performance

 Artículos similares

       
 
Ergo Rikmann, Uno Mäeorg and Jüri Liiv    
Pyrolysis is a promising way to reuse of waste tires. However, the carbon black generated in the process is often contaminated with various pyrolysis products. This study aims to recycle low-quality recycled carbon black (rCB) from waste tire pyrolysis, ... ver más
Revista: Applied Sciences

 
Nazrul Azlan Abdul Samat, Norfifah Bachok and Norihan Md Arifin    
The present study aims to offer new numerical solutions and optimisation strategies for the fluid flow and heat transfer behaviour at a stagnation point through a nonlinear sheet that is expanding or contracting in water-based hybrid nanofluids. Most hyb... ver más
Revista: Computation

 
Huizhong Ma, Liandi Wang, Na Li, Junpu Li and Lan Zhang    
Diamond-like carbon (DLC) has attracted much attention due to its unique properties such as high chemical inertness, optical transparency, and high biocompatibility. In this study, the total gas flow rate was kept constant, while the ratio of reactive ga... ver más
Revista: Applied Sciences

 
Xuqiu Bai, Zhichun Xu, Xianyi Li, Tiantian Zhao, Xiang Ge and Caideng Yuan    
The Marangoni effect is a phenomenon of mass transfer between two fluids with different surface tensions, which has been used in many fields. In this paper, we prepared ultrathin conductive films with graphene (GN) and carbon nanotubes (CNTs) based on th... ver más
Revista: Coatings

 
Seyed Behbood Issa Zadeh, José Santos López Gutiérrez, M. Dolores Esteban, Gonzalo Fernández-Sánchez and Claudia Lizette Garay-Rondero    
According to the 2020 European Sea Ports Organization Environmental Report, ports are the second biggest environmental concern for climate change due to greenhouse gas emissions. Furthermore, the International Association of Ports and Harbors determined ... ver más