Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Optimasi Parameter Pada Metode Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan

Hani Harafani    
Romi Satria Wahono    

Resumen

Kebakaran hutan merupakan salah satu masalah lingkungan yang mengancam hutan, menimbulkan dampak negatif pada lingkungan, menciptakan masalah ekonomi, dan kerusakan ekologis, serta menyebabkan kerugian penting di seluruh dunia setiap tahunnya. Estimasi area yang terbakar penting dilakukan, karena area yang terbakar dapat mencerminkan berapa kuat radiasi api pada vegetasi disekitarnya. SVM dapat mengatasi masalah klasifikasi dan regresi linier ataupun nonlinier kernel yang dapat menjadi satu kemampuan algoritma pembelajaran untuk klasifikasi serta regresi. Namun, SVM juga memiliki kelemahan yaitu sulitnya menentukan nilai parameter yang optimal. Untuk menyelesaikan permasalahan tersebut algoritma genetika diusulkan untuk diterapkan sebagai algoritma pencarian nilai parameter yang efisien pada SVM. Beberapa eksperimen dilakukan untuk menghasilkan estimasi yang akurat. Awalnya percobaan dilakukan pada kernel ?kernel SVM (dot, RBF, polynomial) untuk menentukan kernel mana yang akan digunakan, kemudian model SVM+GA juga dibandingkan dengan model regresi lainnya seperti Linear Regression, k-NN, dan Neural Network. Berdasarkan eksperimen dengan 10 kombinasi parameter pada metode SVM dan SVM+GA dengan kernel dot, RMSE terkecil dihasilkan oleh model SVM+GA sebesar 1.379, sementara pada percobaan SVM dan SVM+GA dengan kernel polynomial RMSE terkecil diperoleh model SVM+GA sebesar 1.379, sedangkan pada percobaan SVM dan SVM+GA dengan kernel RBF diperoleh RMSE terkecil pada model SVM+GA sebesar 1.379.Selanjutnya berdasarkan perbandingan rata-rata RMSE, kernel RBF unggul dengan nilai RMSE terkecil yaitu 1.432 pada SVM, dan 1.418 pada SVM+GA. Pada perbandingan nilai rata-rata RMSE antara SVM(RBF)+GA dengan model lainnya, RMSE terkecil dihasilkan oleh SVM(RBF)+GA yaitu sebesar 1.418, disusul dengan model SVM(RBF) sebesar 1.432, keudian Linear Regression sebesar 1.459, dilanjutkan oleh model k-NN sebesar 1.526 dan yang terakhir adalah NN dengan nilai RMSE sebesar 1.559. maka dapat disimpulkan bahwa optimasi parameter yang dilakukan GA pada model SVM terbukti dapat mengurangi tingkat error pada model SVM tanpa optimasi parameter pada dataset forestfire, selain model SVM(RBF)+GA pada penelitian ini juga terbukti lebih baik dari model regresi lainnya

 Artículos similares