Resumen
The possibility to obtain composites containing the micronano basalt fiber (MNBF) in the amount of 15?80 % by weight has been experimentally demonstrated; it is distinguished by a series of improved properties such as strength, chemical and fire resistance. It has been shown that at average concentrations (up to 15 %) the properties of the composite differ slightly from the unfilled polymer (N-polymer). However, at 50 % by weight, and especially 80 % by weight, there are serious changes in the properties manifested by a profound change in the morphology, as confirmed by SEM-microscopy.It has been established that the introduction of microbasalt could increase strength at compression to 10 % (with a measurement error less than 5 %), and only at a very high filling in the amount of 80 % by weight. Strengthening the effect of microbasalt is expressed in an increase in the compression load of a composite aged in water and its elastic modulus up to 6?12 %. It has been determined that the drop in bending strength (by about 2 times) after filling is a tendency that is characteristic of almost all epoxy fillers. Basalt fiber was no exception. The natural exception is only those samples with basalt roving, which increase their strength at bending. At the same time, the high content (but not at 15 % by weight) has revealed an almost two-fold growth in the module at bending: higher for the composite with roving, which is very important from a practical point of view. Microbasalt filling reduces the rate and degree of swelling in 35 % ?2?2 ? the more active the higher the percentage of filling. Visually, they demonstrate the signs of oxidation with peroxide (white); however, no significant destruction (as in acetone) has been detected. We have built the curves to estimate the degree of the polymer swelling. In addition, the swelling character of the composites with a high degree of filling, in the amount of 50 and 80 % by weight, has been investigated. The study results led to the conclusion of the degree of compaction of the structure of the composite and the increase in its resistance to aggressive environments through an increase in the share of the inorganic phase