Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

HActivityNet: A Deep Convolutional Neural Network for Human Activity RecognitionA Deep Convolutional Neural Network for Human Activity Recognition

Md. Khaliluzzaman    
Md. Abu Bakar Siddiq Sayem    
Lutful KaderMisbah    

Resumen

Human Activity Recognition (HAR), a vast area of a computer vision research, has gained standings in recent years due to its applications in various fields. As human activity has diversification in action, interaction, and it embraces a large amount of data and powerful computational resources, it is very difficult to recognize human activities from an image. In order to solve the computational cost and vanishing gradient problem, in this work, we have proposed a revised simple convolutional neural network (CNN) model named Human Activity Recognition Network (HActivityNet) that is automatically extract and learn features and recognize activities in a rapid, precise and consistent manner. To solve the problem of imbalanced positive and negative data, we have created two datasets, one is HARDataset1 dataset which is created by extracted image frames from KTH dataset, and another one is HARDataset2 dataset prepared from activity video frames performed by us. The comprehensive experiment shows that our model performs better with respect to the present state of the art models. The proposed model attains an accuracy of 99.5% on HARDatase1 and almost 100% on HARDataset2 dataset. The proposed model also performed well on real data.

 Artículos similares

       
 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin    
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual... ver más
Revista: AI

 
Moiz Hassan, Kandasamy Illanko and Xavier N. Fernando    
Single Image Super Resolution (SSIR) is an intriguing research topic in computer vision where the goal is to create high-resolution images from low-resolution ones using innovative techniques. SSIR has numerous applications in fields such as medical/sate... ver más
Revista: AI

 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences

 
Myung-Kyo Seo and Won-Young Yun    
The steel industry is typical process manufacturing, and the quality and cost of the products can be improved by efficient operation of equipment. This paper proposes an efficient diagnosis and monitoring method for the gearbox, which is a key piece of m... ver más
Revista: Applied Sciences