Resumen
This paper investigates the use of image sensors based on complementary metal?oxide?semiconductor (CMOS) single-photon avalanche diodes (SPADs) in high dynamic range (HDR) imaging by combining photon counts and timestamps. The proposed method is validated experimentally with an SPAD detector based on a per-pixel time-to-digital converter (TDC) architecture. The detector, featuring 32 × 32 pixels with 44.64-µm pitch, 19.48% fill factor, and time-resolving capability of ~295-ps, was fabricated in a 150-nm CMOS standard technology. At high photon flux densities, the pixel output is saturated when operating in photon-counting mode, thus limiting the DR of this imager. This limitation can be overcome by exploiting the distribution of photon arrival times in each pixel, which shows an exponential behavior with a decay rate dependent on the photon flux level. By fitting the histogram curve with the exponential decay function, the extracted time constant is used to estimate the photon count. This approach achieves 138.7-dB dynamic range within 30-ms of integration time, and can be further extended by using a timestamping mechanism with a higher resolution.