Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Information  /  Vol: 13 Par: 10 (2022)  /  Artículo
ARTÍCULO
TITULO

Multilingual Handwritten Signature Recognition Based on High-Dimensional Feature Fusion

Aliya Rexit    
Mahpirat Muhammat    
Xuebin Xu    
Wenxiong Kang    
Alimjan Aysa and Kurban Ubul    

Resumen

Handwritten signatures have traditionally been used as a common form of recognition and authentication in tasks such as financial transactions and document authentication. However, there are few studies on minority languages such as Uyghur and Kazakh used in Xinjiang, China, and no available public dataset for these scripts, which are widely used in banking and other fields. Therefore, this paper addresses this problem by constructing a dataset containing Uyghur, Kazakh, and Han languages and presents an automatic handwritten signature recognition approach based on Uyghur, Kazakh, Han, and public datasets. In the paper, a handwritten signature recognition method that combines local maximum occurrence features (LOMO) and histogram of orientated gradients (HOG) features was proposed. LOMO features use a sliding window to represent the local features of the signature image. The high-dimensional features formed by the combination of these methods are dimensionally reduced by principal component analysis (PCA). The classification is performed using k-nearest neighbors (k-NN), and it is compared with the random forest method. The proposed method achieved a recognition rate of 98.4% using a diverse signature database compared with existing methods. It shows that the method was effective and can be applied to large datasets of mixed, multilingual signatures.

 Artículos similares

       
 
Suryakant Tyagi and Sándor Szénási    
Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers t... ver más
Revista: Algorithms

 
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen    
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr... ver más

 
Tao Tang, Yuting Cui, Rui Feng and Deliang Xiang    
With the development of deep learning in the field of computer vision, convolutional neural network models and attention mechanisms have been widely applied in SAR image target recognition. The improvement of convolutional neural network attention in exi... ver más
Revista: Information

 
Lin Xu, Shanxiu Ma, Zhiyuan Shen, Shiyu Huang and Ying Nan    
In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is proposed for discriminating the fatigue state of controllers based on applying multi-speech feature fusion to voice data using a Fuzzy Support Vector Machin... ver más
Revista: Aerospace

 
Fengxu Wang, Wenfu Xu, Lei Yan, Chengqing Xie and Weihua Pu    
Accurately estimating the pose of spacecraft is indispensable for space applications. However, such targets are generally non-cooperative, i.e., no markers are mounted on them, and they include no parts for operation. Therefore, the detection and measure... ver más
Revista: Aerospace