Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Information  /  Vol: 12 Par: 5 (2021)  /  Artículo
ARTÍCULO
TITULO

Missing Link Prediction Using Non-Overlapped Features and Multiple Sources of Social Networks

Pokpong Songmuang    
Chainarong Sirisup and Aroonwan Suebsriwichai    

Resumen

The current methods for missing link prediction in social networks focus on using data from overlapping users from two social network sources to recommend links between unconnected users. To improve prediction of the missing link, this paper presents the use of information from non-overlapping users as additional features in training a prediction model using a machine-learning approach. The proposed features are designed to use together with the common features as extra features to help in tuning up for a better classification model. The social network data sources used in this paper are Twitter and Facebook where Twitter is a main data for prediction and Facebook is a supporting data. For evaluations, a comparison using different machine-learning techniques, feature settings, and different network-density level of data source is studied. The experimental results can be concluded that the prediction model using a combination of the proposed features and the common features with Random Forest technique gained the best efficiency using percentage amount of recovering missing links and F1 score. The model of combined features yields higher percentage of recovering link by an average of 23.25% and the F1-measure by an average of 19.80% than the baseline of multi-social network source.

 Artículos similares

       
 
Andreas Pumpe, Franz Vallée     Pág. 853 - 869
The Total Landed Cost (TLC) often comprise a large share of the total international sourcing cost and thereby determine the cost-saving potential. On the one hand, companies often have to deal with a set of different international supplier selection situ... ver más

 
Huiru Cao,Zhi Yang,Ye-Qian Li     Pág. pp. 64 - 67
In this paper, we construct a new type of mobile wireless data sinking platform for data collection based on unmanned aerial vehicle (UAV) technology, which aims to address the increasing demand for wireless sensor network (WSN) distribution in different... ver más

 
Lars Sunding, Anders Ekholm     Pág. 1 - 17
Problems concerning quality and productivity in the construction sector have been a recurrent issue for many years and seem to remain in spite of various initiatives for resolving them. This situation is a result of human action. From social sciences we ... ver más

 
David M. Anderson    

 
No Authors     Pág. 25 - 29
Revista: POWER