Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Using Generative AI to Improve the Performance and Interpretability of Rule-Based Diagnosis of Type 2 Diabetes Mellitus

Leon Kopitar    
Iztok Fister    
Jr. and Gregor Stiglic    

Resumen

Introduction: Type 2 diabetes mellitus is a major global health concern, but interpreting machine learning models for diagnosis remains challenging. This study investigates combining association rule mining with advanced natural language processing to improve both diagnostic accuracy and interpretability. This novel approach has not been explored before in using pretrained transformers for diabetes classification on tabular data. Methods: The study used the Pima Indians Diabetes dataset to investigate Type 2 diabetes mellitus. Python and Jupyter Notebook were employed for analysis, with the NiaARM framework for association rule mining. LightGBM and the dalex package were used for performance comparison and feature importance analysis, respectively. SHAP was used for local interpretability. OpenAI GPT version 3.5 was utilized for outcome prediction and interpretation. The source code is available on GitHub. Results: NiaARM generated 350 rules to predict diabetes. LightGBM performed better than the GPT-based model. A comparison of GPT and NiaARM rules showed disparities, prompting a similarity score analysis. LightGBM?s decision making leaned heavily on glucose, age, and BMI, as highlighted in feature importance rankings. Beeswarm plots demonstrated how feature values correlate with their influence on diagnosis outcomes. Discussion: Combining association rule mining with GPT for Type 2 diabetes mellitus classification yields limited effectiveness. Enhancements like preprocessing and hyperparameter tuning are required. Interpretation challenges and GPT?s dependency on provided rules indicate the necessity for prompt engineering and similarity score methods. Variations in feature importance rankings underscore the complexity of T2DM. Concerns regarding GPT?s reliability emphasize the importance of iterative approaches for improving prediction accuracy.

 Artículos similares

       
 
Minh-Quan Vo, Thu Nguyen, Michael A. Riegler and Hugo L. Hammer    
Generative models have recently received a lot of attention. However, a challenge with such models is that it is usually not possible to compute the likelihood function, which makes parameter estimation or training of the models challenging. The most com... ver más
Revista: Algorithms

 
Baris Yigin and Metin Celik    
In recent years, advanced methods and smart solutions have been investigated for the safe, secure, and environmentally friendly operation of ships. Since data acquisition capabilities have improved, data processing has become of great importance for ship... ver más

 
Mohammad Alhumaid and Ayman G. Fayoumi    
Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose significant challenges in diagnosis and treatment due to the complex anatomical structures and diverse disease manifestations. The aim of this study is to investigate t... ver más
Revista: Applied Sciences

 
Kalyan Chatterjee, M. Raju, N. Selvamuthukumaran, M. Pramod, B. Krishna Kumar, Anjan Bandyopadhyay and Saurav Mallik    
According to global data on visual impairment from the World Health Organization in 2010, an estimated 285 million individuals, including 39 million who are blind, face visual impairments. These individuals use non-contact methods such as voice commands ... ver más
Revista: Information

 
Wenhao Sun, Yidong Zou, Yunhe Wang, Boyi Xiao, Haichuan Zhang and Zhihuai Xiao    
In the practical production environment, the complexity and variability of hydroelectric units often result in a need for more fault data, leading to inadequate accuracy in fault identification for data-driven intelligent diagnostic models. To address th... ver más
Revista: Water