Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Analyzing Biomedical Datasets with Symbolic Tree Adaptive Resonance Theory

Sasha Petrenko    
Daniel B. Hier    
Mary A. Bone    
Tayo Obafemi-Ajayi    
Erik J. Timpson    
William E. Marsh    
Michael Speight and Donald C. Wunsch II    

Resumen

Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and altered proteins to changes in molecular functions and biological processes. It is desirable to gain new insights from these data, especially with regard to the uncovering of hierarchical structures relating disease variants. However, analysis to this end has proven difficult due to the complexity of the connections between multi-categorical symbolic data. This article proposes symbolic tree adaptive resonance theory (START), with additional supervised, dual-vigilance (DV-START), and distributed dual-vigilance (DDV-START) formulations, for the clustering of multi-categorical symbolic data from biomedical datasets by demonstrating its utility in clustering variants of Charcot?Marie?Tooth disease using genomic, phenotypic, and proteomic data.

 Artículos similares