Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Information  /  Vol: 13 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

ProtoE: Enhancing Knowledge Graph Completion Models with Unsupervised Type Representation Learning

Yuxun Lu and Ryutaro Ichise    

Resumen

Knowledge graph completion (KGC) models are a feasible approach for manipulating facts in knowledge graphs. However, the lack of entity types in current KGC models results in inaccurate link prediction results. Most existing type-aware KGC models require entity type annotations, which are not always available and expensive to obtain. We propose ProtoE, an unsupervised method for learning implicit type and type constraint representations. ProtoE enhances type-agnostic KGC models by relation-specific prototype embeddings. Our method does not rely on entity type annotations to capture the type and type constraints of entities. Unlike existing unsupervised type representation learning methods, which have only a single representation for entity-type and relation-type constraints, our method can capture multiple type constraints in relations. Experimental results show that our method can improve the performance of both bilinear and translational KGC models in the link prediction task.

 Artículos similares

       
 
Glauco Nobrega, Beatriz Cardoso, Reinaldo Souza, José Pereira, Pedro Pontes, Susana O. Catarino, Diana Pinho, Rui Lima and Ana Moita    
The issue of thermal control for space missions has been critical since the early space missions in the late 1950s. The demands in such environments are heightened, characterized by significant temperature variations and the need to manage substantial de... ver más
Revista: Aerospace

 
Mohammad Shokouhifar, Mohamad Hasanvand, Elaheh Moharamkhani and Frank Werner    
Heart disease is a global health concern of paramount importance, causing a significant number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse outcomes and improving patient well-being, there... ver más
Revista: Algorithms

 
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi    
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ... ver más
Revista: Applied Sciences

 
Can Li, Hua Sun, Changhong Wang, Sheng Chen, Xi Liu, Yi Zhang, Na Ren and Deyu Tong    
In order to safeguard image copyrights, zero-watermarking technology extracts robust features and generates watermarks without altering the original image. Traditional zero-watermarking methods rely on handcrafted feature descriptors to enhance their per... ver más
Revista: Applied Sciences

 
Tangwu Yang, Dianpeng Li, Qing Xu, Yijia Zhu, Zhengjie Zhu, Xin Leng, Dehua Zhao and Shuqing An    
Long-term fishing bans have spurred extensive debate regarding their impacts on ecosystem structures, functions, and water qualities. However, data on the effects of specific changes induced by fishing bans on ecosystem structures, functions, and water q... ver más
Revista: Water