Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 11 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

Convolutional Support Vector Models: Prediction of Coronavirus Disease Using Chest X-rays

Mateus Maia    
Jonatha S. Pimentel    
Ivalbert S. Pereira    
João Gondim    
Marcos E. Barreto and Anderson Ara    

Resumen

The disease caused by the new coronavirus (COVID-19) has been plaguing the world for months and the number of cases are growing more rapidly as the days go by. Therefore, finding a way to identify who has the causative virus is impressive, in order to find a way to stop its proliferation. In this paper, a complete and applied study of convolutional support machines will be presented to classify patients infected with COVID-19 using X-ray data and comparing them with traditional convolutional neural network (CNN). Based on the fitted models, it was possible to observe that the convolutional support vector machine with the polynomial kernel (CSVMPol" role="presentation">??????????????CSVMPol C S V M P o l ) has a better predictive performance. In addition to the results obtained based on real images, the behavior of the models studied was observed through simulated images, where it was possible to observe the advantages of support vector machine (SVM) models.

Palabras claves

 Artículos similares

       
 
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms

 
Lars Lundberg, Martin Boldt, Anton Borg and Håkan Grahn    
We present a method, including tool support, for bibliometric mining of trends in large and dynamic research areas. The method is applied to the machine learning research area for the years 2013 to 2022. A total number of 398,782 documents from Scopus we... ver más
Revista: AI

 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng    
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ... ver más
Revista: Applied Sciences

 
Jiahui Zhao, Zhibin Li, Pan Liu, Mingye Zhang     Pág. 115 - 142
Demand prediction plays a critical role in traffic research. The key challenge of traffic demand prediction lies in modeling the complex spatial dependencies and temporal dynamics. However, there is no mature and widely accepted concept to support the so... ver más