Resumen
Because of the splendid front of sustainable energy reassets in a DC Microgrid, it is profoundly willing to variances in energy age. A hybrid energy storage system (HESS) which includes a battery and a supercapacitor (SC) is used to decrease in-built fluctuations. The two different characteristics of the battery and supercapacitor make it a great match for HESS applications. The HESS is connected to the DC Microgrid through a bidirectional converter, which allows energy to be exchanged between the battery and supercapacitor. This paper discusses a converter presenting an approach for a double-input bidirectional converter. Related to this, a regulator was designed for use as a voltage regulation in a DC Microgrid. The designed controllers accelerated PV generation and load disturbance DC link voltage restoration, in addition to effective power balancing among the battery and the SC. The conventional PI, proposed PI, and predictive PI control techniques are effectively validated using MATLAB Simulink. Experimental findings with low power have been used to validate the operation of the predictive PI control technique. The DC grid voltage profile showed substantial improvement while using the predictive PI control in comparison with the proposed and conventional PI control techniques in terms of setting time and maximum peak overshoot.