Resumen
The application of reconfigurable multi-robot systems introduces additional degrees of freedom to design robotic missions compared to classical multi-robot systems. To allow for autonomous operation of such systems, planning approaches have to be investigated that cannot only cope with the combinatorial challenge arising from the increased flexibility of modular systems, but also exploit this flexibility to improve for example the safety of operation. While the problem originates from the domain of robotics it is of general nature and significantly intersects with operations research. This paper suggests a constraint-based mission planning approach, and presents a set of revised definitions for reconfigurable multi-robot systems including the representation of the planning problem using spatially and temporally qualified resource constraints. Planning is performed using a multi-stage approach and a combined use of knowledge-based reasoning, constraint-based programming and integer linear programming. The paper concludes with the illustration of the solution of a planned example mission.