Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Deep Supervised Hashing by Fusing Multiscale Deep Features for Image Retrieval

Adil Redaoui    
Amina Belalia and Kamel Belloulata    

Resumen

Deep network-based hashing has gained significant popularity in recent years, particularly in the field of image retrieval. However, most existing methods only focus on extracting semantic information from the final layer, disregarding valuable structural information that contains important semantic details, which are crucial for effective hash learning. On the one hand, structural information is important for capturing the spatial relationships between objects in an image. On the other hand, image retrieval tasks often require a more holistic representation of the image, which can be achieved by focusing on the semantic content. The trade-off between structural information and image retrieval accuracy in the context of image hashing and retrieval is a crucial consideration. Balancing these aspects is essential to ensure both accurate retrieval results and meaningful representation of the underlying image structure. To address this limitation and improve image retrieval accuracy, we propose a novel deep hashing method called Deep Supervised Hashing by Fusing Multiscale Deep Features (DSHFMDF). Our approach involves extracting multiscale features from multiple convolutional layers and fusing them to generate more robust representations for efficient image retrieval. The experimental results demonstrate that our method surpasses the performance of state-of-the-art hashing techniques, with absolute increases of 11.1% and 8.3% in Mean Average Precision (MAP) on the CIFAR-10 and NUS-WIDE datasets, respectively.

 Artículos similares

       
 
Adam Olesinski and Zbigniew Piotrowski    
Revista: Applied Sciences

 
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett    
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ... ver más
Revista: Algorithms

 
Jiarui Xia and Yongshou Dai    
Ground roll noise suppression is a crucial step in processing deep pre-stack seismic data. Recently, supervised deep learning methods have gained popularity in this field due to their ability to adaptively learn and extract powerful features. However, th... ver más
Revista: Applied Sciences

 
Abdullahi T. Sulaiman, Habeeb Bello-Salau, Adeiza J. Onumanyi, Muhammed B. Mu?azu, Emmanuel A. Adedokun, Ahmed T. Salawudeen and Abdulfatai D. Adekale    
The particle swarm optimization (PSO) algorithm is widely used for optimization purposes across various domains, such as in precision agriculture, vehicular ad hoc networks, path planning, and for the assessment of mathematical test functions towards ben... ver más
Revista: Algorithms

 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation