Resumen
E-voting is one of the valid use cases of blockchain technology with many blockchain e-voting systems already proposed. But efforts that focus on critical analysis of blockchain e-voting architectures for national elections from stakeholders? perspectives are mostly lacking in the literature. Therefore, government decision-makers and election stakeholders do not yet have a sufficient basis to understand the potential risks, challenges, and prospects that are associated with blockchain e-voting. This paper demonstrates how the use of the Architecture Trade-off Analysis Method (ATAM) can enable stakeholders in national elections to understand the risks, prospects, and challenges that could be associated with a blockchain e-voting system for national elections. By using a study context of South Africa, a proposed blockchain e-voting architecture was used as a basis to aid election stakeholders to reason on the concept of blockchain e-voting to get them to understand the potential risks, security threats, critical requirements attributes, and weaknesses that could be associated with using blockchain e-voting for national elections. The study found that blockchain e-voting can prevent many security attacks, internal vote manipulation, and promote transparency. However, voter validation and the security of the blockchain architecture are potential weaknesses that will need significant attention.