Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Information  /  Vol: 12 Par: 5 (2021)  /  Artículo
ARTÍCULO
TITULO

Network Representation Learning Enhanced by Partial Community Information That Is Found Using Game Theory

Hanlin Sun    
Wei Jie    
Jonathan Loo    
Liang Chen    
Zhongmin Wang    
Sugang Ma    
Gang Li and Shuai Zhang    

Resumen

Presently, data that are collected from real systems and organized as information networks are universal. Mining hidden information from these data is generally helpful to understand and benefit the corresponding systems. The challenges of analyzing such data include high computational complexity and low parallelizability because of the nature of complicated interconnected structure of their nodes. Network representation learning, also called network embedding, provides a practical and promising way to solve these issues. One of the foremost requirements of network embedding is preserving network topology properties in learned low-dimension representations. Community structure is a prominent characteristic of complex networks and thus should be well maintained. However, the difficulty lies in the fact that the properties of community structure are multivariate and complicated; therefore, it is insufficient to model community structure using a predefined model, the way that is popular in most state-of-the-art network embedding algorithms explicitly considering community structure preservation. In this paper, we introduce a multi-process parallel framework for network embedding that is enhanced by found partial community information and can preserve community properties well. We also implement the framework and propose two node embedding methods that use game theory for detecting partial community information. A series of experiments are conducted to evaluate the performance of our methods and six state-of-the-art algorithms. The results demonstrate that our methods can effectively preserve community properties of networks in their low-dimension representations. Specifically, compared to the involved baselines, our algorithms behave the best and are the runners-up on networks with high overlapping diversity and density.

 Artículos similares

       
 
Longxin Yao, Yun Lu, Mingjiang Wang, Yukun Qian and Heng Li    
The construction of complex networks from electroencephalography (EEG) proves to be an effective method for representing emotion patterns in affection computing as it offers rich spatiotemporal EEG features associated with brain emotions. In this paper, ... ver más
Revista: Applied Sciences

 
Yiming Mo, Lei Wang, Wenqing Hong, Congzhen Chu, Peigen Li and Haiting Xia    
The intrusion of foreign objects on airport runways during aircraft takeoff and landing poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot be ruled out on time by traditional manual inspection, and the... ver más
Revista: Applied Sciences

 
Kaiwen Song, Xiujuan Jiang, Tianye Wang, Dengming Yan, Hongshi Xu and Zening Wu    
The uneven spatial and temporal distribution of water resources has consistently been one of the most significant limiting factors for social development in many regions. Furthermore, with the intensification of climate change, this inequality is progres... ver más
Revista: Water

 
Xingxing Tong, Ming Chen and Guofu Feng    
The issue of aquatic product quality and safety has gradually become a focal point of societal concern. Analyzing textual comments from people about aquatic products aids in promptly understanding the current sentiment landscape regarding the quality and... ver más
Revista: Applied Sciences

 
Ning Li, Tianrun Ye, Zhihua Zhou, Chunming Gao and Ping Zhang    
In the domain of automatic visual inspection for miniature capacitor quality control, the task of accurately detecting defects presents a formidable challenge. This challenge stems primarily from the small size and limited sample availability of defectiv... ver más
Revista: Applied Sciences