Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Information  /  Vol: 14 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Approaches for Big Data-Driven Metadata Extraction in Online Job Postings

Panagiotis Skondras    
Nikos Zotos    
Dimitris Lagios    
Panagiotis Zervas    
Konstantinos C. Giotopoulos and Giannis Tzimas    

Resumen

This article presents a study on the multi-class classification of job postings using machine learning algorithms. With the growth of online job platforms, there has been an influx of labor market data. Machine learning, particularly NLP, is increasingly used to analyze and classify job postings. However, the effectiveness of these algorithms largely hinges on the quality and volume of the training data. In our study, we propose a multi-class classification methodology for job postings, drawing on AI models such as text-davinci-003 and the quantized versions of Falcon 7b (Falcon), Wizardlm 7B (Wizardlm), and Vicuna 7B (Vicuna) to generate synthetic datasets. These synthetic data are employed in two use-case scenarios: (a) exclusively as training datasets composed of synthetic job postings (situations where no real data is available) and (b) as an augmentation method to bolster underrepresented job title categories. To evaluate our proposed method, we relied on two well-established approaches: the feedforward neural network (FFNN) and the BERT model. Both the use cases and training methods were assessed against a genuine job posting dataset to gauge classification accuracy. Our experiments substantiated the benefits of using synthetic data to enhance job posting classification. In the first scenario, the models? performance matched, and occasionally exceeded, that of the real data. In the second scenario, the augmented classes consistently outperformed in most instances. This research confirms that AI-generated datasets can enhance the efficacy of NLP algorithms, especially in the domain of multi-class classification job postings. While data augmentation can boost model generalization, its impact varies. It is especially beneficial for simpler models like FNN. BERT, due to its context-aware architecture, also benefits from augmentation but sees limited improvement. Selecting the right type and amount of augmentation is essential.

 Artículos similares

       
 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace