Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Information  /  Vol: 11 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

Sentiment Analysis and Text Mining of Questionnaires to Support Telemonitoring Programs

Chiara Zucco    
Clarissa Paglia    
Sonia Graziano    
Sergio Bella and Mario Cannataro    

Resumen

While several studies have shown how telemedicine and, in particular, home telemonitoring programs lead to an improvement in the patient?s quality of life, a reduction in hospitalizations, and lower healthcare costs, different variables may affect telemonitoring effectiveness and purposes. In the present paper, an integrated software system, based on Sentiment Analysis and Text Mining, to deliver, collect, and analyze questionnaire responses in telemonitoring programs is presented. The system was designed to be a complement to home telemonitoring programs with the objective of investigating the paired relationship between opinions and the adherence scores of patients and their changes through time. The novel contributions of the system are: (i) the design and software prototype for the management of online questionnaires over time; and (ii) an analysis pipeline that leverages a sentiment polarity score by using it as a numerical feature for the integration and the evaluation of open-ended questions in clinical questionnaires. The software pipeline was initially validated with a case-study application to discuss the plausibility of the existence of a directed relationship between a score representing the opinion polarity of patients about telemedicine, and their adherence score, which measures how well patients follow the telehomecare program. In this case-study, 169 online surveys sent by 38 patients enrolled in a home telemonitoring program provided by the Cystic Fibrosis Unit at the ?Bambino Gesù? Children?s Hospital in Rome, Italy, were collected and analyzed. The experimental results show that, under a Granger-causality perspective, a predictive relationship may exist between the considered variables. If supported, these preliminary results may have many possible implications of practical relevance, for instance the early detection of poor adherence in patients to enable the application of personalized and targeted actions.

 Artículos similares

       
 
Achini Adikari, Su Nguyen, Rashmika Nawaratne, Daswin De Silva and Damminda Alahakoon    
The proliferation of online hotel review platforms has prompted decision-makers in the hospitality sector to acknowledge the significance of extracting valuable information from this vast source. While contemporary research has primarily focused on extra... ver más
Revista: Applied Sciences

 
Hongyu Shao, Sizhe Pan, Yufei Song and Quanfu Li    
In the context of rapid product iteration, design conflicts arise from discrepancies in designers? understanding of user needs, influenced by subjective preferences, behavioural stances, and other factors. This paper proposes a product conceptual design ... ver más
Revista: Applied Sciences

 
Haidi Badr, Nayer Wanas and Magda Fayek    
Unsupervised domain adaptation (UDA) presents a significant challenge in sentiment analysis, especially when faced with differences between source and target domains. This study introduces Weighted Sequential Unsupervised Domain Adaptation (WS-UDA), a no... ver más
Revista: Applied Sciences

 
Mahammad Khalid Shaik Vadla, Mahima Agumbe Suresh and Vimal K. Viswanathan    
Understanding customer emotions and preferences is paramount for success in the dynamic product design landscape. This paper presents a study to develop a prediction pipeline to detect the aspect and perform sentiment analysis on review data. The pre-tra... ver más
Revista: Algorithms

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI