Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Information  /  Vol: 13 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Justifying Arabic Text Sentiment Analysis Using Explainable AI (XAI): LASIK Surgeries Case Study

Youmna Abdelwahab    
Mohamed Kholief and Ahmed Ahmed Hesham Sedky    

Resumen

With the increasing use of machine learning across various fields to address several aims and goals, the complexity of the ML and Deep Learning (DL) approaches used to provide solutions has also increased. In the last few years, Explainable AI (XAI) methods to further justify and interpret deep learning models have been introduced across several domains and fields. While most papers have applied XAI to English and other Latin-based languages, this paper aims to explain attention-based long short-term memory (LSTM) results across Arabic Sentiment Analysis (ASA), which is considered an uncharted area in previous research. With the use of Local Interpretable Model-agnostic Explanation (LIME), we intend to further justify and demonstrate how the LSTM leads to the prediction of sentiment polarity within ASA in domain-specific Arabic texts regarding medical insights on LASIK surgery across Twitter users. In our research, the LSTM reached an accuracy of 79.1% on the proposed data set. Throughout the representation of sentiments using LIME, it demonstrated accurate results regarding how specific words contributed to the overall sentiment polarity classification. Furthermore, we compared the word count with the probability weights given across the examples, in order to further validate the LIME results in the context of ASA.

 Artículos similares

       
 
Aniket Kumar Singh, Bishal Lamichhane, Suman Devkota, Uttam Dhakal and Chandra Dhakal    
This study investigates self-assessment tendencies in Large Language Models (LLMs), examining if patterns resemble human cognitive biases like the Dunning?Kruger effect. LLMs, including GPT, BARD, Claude, and LLaMA, are evaluated using confidence scores ... ver más
Revista: Information

 
Moutaz Alazab and Salah Alhyari    
Industry 4.0 has revolutionized manufacturing processes and facilities through the creation of smart and sustainable production facilities. Blockchain technology (BCT) has emerged as an invaluable asset within Industrial Revolution 4.0 (IR4.0), offering ... ver más
Revista: Information

 
Xiaohui Yan, Tianqi Zhang, Wenying Du, Qingjia Meng, Xinghan Xu and Xiang Zhao    
Water quality prediction, a well-established field with broad implications across various sectors, is thoroughly examined in this comprehensive review. Through an exhaustive analysis of over 170 studies conducted in the last five years, we focus on the a... ver más

 
Yusuf Brima, Ulf Krumnack, Simone Pika and Gunther Heidemann    
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that are ... ver más
Revista: Information

 
Rébaï Soret, Noemie Prea and Vsevolod Peysakhovich    
Attentional orienting is a crucial process in perceiving our environment and guiding human behavior. Recent studies have suggested a forward attentional bias, where faster reactions are observed to spatial cues indicating information appearing in the for... ver más
Revista: Information