Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Models for Waterfowl Detection and Classification in Aerial Images

Yang Zhang    
Yuan Feng    
Shiqi Wang    
Zhicheng Tang    
Zhenduo Zhai    
Reid Viegut    
Lisa Webb    
Andrew Raedeke and Yi Shang    

Resumen

Waterfowl populations monitoring is essential for wetland conservation. Lately, deep learning techniques have shown promising advancements in detecting waterfowl in aerial images. In this paper, we present performance evaluation of several popular supervised and semi-supervised deep learning models for waterfowl detection in aerial images using four new image datasets containing 197,642 annotations. The best-performing model, Faster R-CNN, achieved 95.38% accuracy in terms of mAP. Semi-supervised learning models outperformed supervised models when the same amount of labeled data was used for training. Additionally, we present performance evaluation of several deep learning models on waterfowl classifications on aerial images using a new real-bird classification dataset consisting of 6,986 examples and a new decoy classification dataset consisting of about 10,000 examples per category of 20 categories. The best model achieved accuracy of 91.58% on the decoy dataset and 82.88% on the real-bird dataset.

 Artículos similares

       
 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water