Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Informatics  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Reinforcement Learning in Education: A Literature Review

Bisni Fahad Mon    
Asma Wasfi    
Mohammad Hayajneh    
Ahmad Slim and Najah Abu Ali    

Resumen

The utilization of reinforcement learning (RL) within the field of education holds the potential to bring about a significant shift in the way students approach and engage with learning and how teachers evaluate student progress. The use of RL in education allows for personalized and adaptive learning, where the difficulty level can be adjusted based on a student?s performance. As a result, this could result in heightened levels of motivation and engagement among students. The aim of this article is to investigate the applications and techniques of RL in education and determine its potential impact on enhancing educational outcomes. It compares the various policies induced by RL with baselines and identifies four distinct RL techniques: the Markov decision process, partially observable Markov decision process, deep RL network, and Markov chain, as well as their application in education. The main focus of the article is to identify best practices for incorporating RL into educational settings to achieve effective and rewarding outcomes. To accomplish this, the article thoroughly examines the existing literature on using RL in education and its potential to advance educational technology. This work provides a thorough analysis of the various techniques and applications of RL in education to answer questions related to the effectiveness of RL in education and its future prospects. The findings of this study will provide researchers with a benchmark to compare the usefulness and effectiveness of commonly employed RL algorithms and provide direction for future research in education.

 Artículos similares

       
 
Jin Wang, Peng Zhao, Zhe Zhang, Ting Yue, Hailiang Liu and Lixin Wang    
The upset state is an unexpected flight state, which is characterized by an unintentional deviation from normal operating parameters. It is difficult for the pilot to recover the aircraft from the upset state accurately and quickly. In this paper, an ups... ver más
Revista: Aerospace

 
Siyao Lu, Rui Xu, Zhaoyu Li, Bang Wang and Zhijun Zhao    
The International Lunar Research Station, to be established around 2030, will equip lunar rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which rovers must go toward different waypoints without encounterin... ver más
Revista: Aerospace

 
Sungwon Moon, Seolwon Koo, Yujin Lim and Hyunjin Joo    
With recent technological advancements, the commercialization of autonomous vehicles (AVs) is expected to be realized soon. However, it is anticipated that a mixed traffic of AVs and human-driven vehicles (HVs) will persist for a considerable period unti... ver más
Revista: Applied Sciences

 
Ziyi Wang, Xinran Li, Luoyang Sun, Haifeng Zhang, Hualin Liu and Jun Wang    
Efficient yet sufficient exploration remains a critical challenge in reinforcement learning (RL), especially for Markov Decision Processes (MDPs) with vast action spaces. Previous approaches have commonly involved projecting the original action space int... ver más
Revista: Algorithms

 
Depeng Gao, Shuai Wang, Yuwei Yang, Haifei Zhang, Hao Chen, Xiangxiang Mei, Shuxi Chen and Jianlin Qiu    
Servo motors play an important role in automation equipment and have been used in several manufacturing fields. However, the commonly used control methods need their parameters to be set manually, which is rather difficult, and this means that these meth... ver más
Revista: Algorithms