Resumen
Background: The electrical properties of cells and tissues in relation to energy exposure have been investigated, presenting their resistance and capacitance characteristics. The dielectric response to radiofrequency fields exhibits polarization heterogeneity under pathological conditions. The aim of the study was to analyze the differences in changes in resistance and capacitance measurements in the range from 1 kHz to 1 MHz, combined with an assessment of the correlation between the results of electrical impedance spectroscopy (EIS) and inflammatory activation. Methods: In the prospective study, EIS was performed on the non-dominant arm in 29 male patients (median (Q1?Q3) age of 69 (65?72)) with complex coronary artery disease and 10 male patients (median (Q1?Q3) age of 66 (62?69)) of the control group. Blood samples were collected for inflammatory index analysis. Results: The logistic regression analysis revealed a negative correlation with inflammatory indexes, including neutrophil to lymphocyte ratio (NLR) in the CAD group in the frequency of 30 kHz (p = 0.038, r = -0.317) regarding EIS resistance measurements and a positive correlation in CAD group in the frequency of 10 kHz (p = 0.029, r = -0.354) regarding EIS capacitance. Conclusions: The bioelectric characteristics of peripheral tissues measured by resistance and capacitance in EIS differ in patients with coronary artery disease and in the control group. Electrical impedance spectroscopy reveals a statistically significant correlation with inflammatory markers in patients with CAD.