Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Feature Learning with Multi-objective Evolutionary Computation in the generation of Acoustic Features

José Antonio Alves Menezes    
Giordano Cabral    
Bruno Gomes    
Paulo Pereira    

Resumen

To choice audio features has been a very interesting theme for audio classification experts. They have seen that this process is probably the most important effort to solve the classification problem. In this sense, there are techniques of Feature Learning for generate new features more suitable for classification model than conventional features. However, these techniques generally do not depend on knowledge domain and they can apply in various types of raw data. However, less agnostic approaches learn a type of knowledge restricted to the area studded. The audio data requires a specific knowledge type. There are many techniques that seek to improve the performance of the new generation of acoustic features, among which stands the technique that use evolutionary algorithms to explore analytical space of function. However, the efforts made leave opportunities for improvement. The purpose of this work is to propose and evaluate a multi-objective alternative to the exploitation of analytical audio features. In addition, experiments were arranged to be validated the method, with the help a computational prototype that implemented the proposed solution. After it was found the effectiveness of the model and ensuring that there is still opportunity for improvement in the chosen segment.

 Artículos similares

       
 
Abdul Rahaman Wahab Sait and Ali Mohammad Alorsan Bani Awad    
Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease that may result in myocardial infarction. Annually, it leads to millions of fatalities and causes billions of dollars in global economic losses. Limited resources and comp... ver más
Revista: Applied Sciences

 
Fang Gui, Jiaoyun Yang, Yiming Tang, Hongtu Chen and Ning An    
The life stories of older adults encapsulate an array of personal experiences that reflect their care needs. However, due to inherent fuzzy features, fragmented natures, repetition, and redundancies, the practical application of the life story approach p... ver más
Revista: Applied Sciences

 
Nadia Brancati and Maria Frucci    
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ... ver más
Revista: Information

 
Abdelghani Azri, Adil Haddi and Hakim Allali    
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user?item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in ... ver más
Revista: Information

 
Mazen Gazzan and Frederick T. Sheldon    
Ransomware attacks have emerged as a significant threat to critical data and systems, extending beyond traditional computers to mobile and IoT/Cyber?Physical Systems. This study addresses the need to detect early ransomware behavior when only limited dat... ver más
Revista: Information