Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Information  /  Vol: 11 Par: 9 (2020)  /  Artículo
ARTÍCULO
TITULO

Learning a Convolutional Autoencoder for Nighttime Image Dehazing

Mengyao Feng    
Teng Yu    
Mingtao Jing and Guowei Yang    

Resumen

Currently, haze removal of images captured at night for foggy scenes rely on the traditional, prior-based methods, but these methods are frequently ineffective at dealing with night hazy images. In addition, the light sources at night are complicated and there is a problem of inconsistent brightness. This makes the estimation of the transmission map complicated in the night scene. Based on the above analysis, we propose an autoencoder method to solve the problem of overestimation or underestimation of transmission captured by the traditional, prior-based methods. For nighttime hazy images, we first remove the color effect of the haze image with an edge-preserving maximum reflectance prior (MRP) method. Then, the hazy image without color influence is input into the self-encoder network with skip connections to obtain the transmission map. Moreover, instead of using the local maximum method, we estimate the ambient illumination through a guiding image filtering. In order to highlight the effectiveness of our experiments, a large number of comparison experiments were conducted between our method and the state-of-the-art methods. The results show that our method can effectively suppress the halo effect and reduce the effectiveness of glow. In the experimental part, we calculate that the average Peak Signal to Noise Ratio (PSNR) is 21.0968 and the average Structural Similarity (SSIM) is 0.6802.

 Artículos similares

       
 
Guoqing Dong, Weirong Li, Zhenzhen Dong, Cai Wang, Shihao Qian, Tianyang Zhang, Xueling Ma, Lu Zou, Keze Lin and Zhaoxia Liu    
The developed prototype provides a more efficient and accurate solution for classifying dynagraph cards, meeting the requirements of oil field operations and enhancing economic benefits and work efficiency.
Revista: Applied Sciences

 
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim    
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta... ver más
Revista: Applied Sciences

 
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu    
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti... ver más
Revista: Applied Sciences

 
Nils Hütten, Miguel Alves Gomes, Florian Hölken, Karlo Andricevic, Richard Meyes and Tobias Meisen    
Quality assessment in industrial applications is often carried out through visual inspection, usually performed or supported by human domain experts. However, the manual visual inspection of processes and products is error-prone and expensive. It is ther... ver más

 
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences