Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Informatics  /  Vol: 8 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

Application of Machine Learning in Intensive Care Unit (ICU) Settings Using MIMIC Dataset: Systematic Review

Mahanazuddin Syed    
Shorabuddin Syed    
Kevin Sexton    
Hafsa Bareen Syeda    
Maryam Garza    
Meredith Zozus    
Farhanuddin Syed    
Salma Begum    
Abdullah Usama Syed    
Joseph Sanford and Fred Prior    

Resumen

Modern Intensive Care Units (ICUs) provide continuous monitoring of critically ill patients susceptible to many complications affecting morbidity and mortality. ICU settings require a high staff-to-patient ratio and generates a sheer volume of data. For clinicians, the real-time interpretation of data and decision-making is a challenging task. Machine Learning (ML) techniques in ICUs are making headway in the early detection of high-risk events due to increased processing power and freely available datasets such as the Medical Information Mart for Intensive Care (MIMIC). We conducted a systematic literature review to evaluate the effectiveness of applying ML in the ICU settings using the MIMIC dataset. A total of 322 articles were reviewed and a quantitative descriptive analysis was performed on 61 qualified articles that applied ML techniques in ICU settings using MIMIC data. We assembled the qualified articles to provide insights into the areas of application, clinical variables used, and treatment outcomes that can pave the way for further adoption of this promising technology and possible use in routine clinical decision-making. The lessons learned from our review can provide guidance to researchers on application of ML techniques to increase their rate of adoption in healthcare.

 Artículos similares

       
 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Sadiq Gbagba, Lorenzo Maccioni and Franco Concli    
In the shipbuilding, construction, automotive, and aerospace industries, welding is still a crucial manufacturing process because it can be utilized to create massive, intricate structures with exact dimensional specifications. These kinds of structures ... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
George Papageorgiou, Vangelis Sarlis and Christos Tjortjis    
This study utilized advanced data mining and machine learning to examine player injuries in the National Basketball Association (NBA) from 2000?01 to 2022?23. By analyzing a dataset of 2296 players, including sociodemographics, injury records, and financ... ver más
Revista: Information

 
Xin Tian and Yuan Meng    
Multi-relational graph neural networks (GNNs) have found widespread application in tasks involving enhancing knowledge representation and knowledge graph (KG) reasoning. However, existing multi-relational GNNs still face limitations in modeling the excha... ver más
Revista: Applied Sciences